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Abstract

Stroke genetics have been transformed from a field exploring causes of rare hereditary forms of cerebro-
vascular disease to an international dynamic and expanding arena offering key insights into stroke biology 
and exciting opportunities for clinical applications. Genome-wide association studies, which triggered this 
transformation, have already identified more than 40 genomic risk loci associated with stroke, which offer 
important windows into stroke pathogenesis and starting points for experimental explorations of pharma-
cological strategies. Furthermore, genome-wide explorations have enabled the development of polygenic 
risk scores, which represent a promising potential application for risk prediction in clinical populations. Uti-
lization of genetic data further allows exploration of causal relationships between exposures and outcomes 
and the discovery of novel drug targets for stroke with the use of Mendelian randomization. In this review, 
I provide a brief overview of the major developments in the field and opportunities for applications.
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Stroke remains a leading cause of death and dis-
ability worldwide [1]. While major advances in the 
prevention and treatment of stroke have taken place, 
important gaps remain. For example, there is no spe-
cific preventive strategy for small vessel stroke and 
intracerebral hemorrhage, whereas neuroprotectant 
therapies have not met the initial expectations. As 
we learned from the past, understanding the biol-
ogy underlying stroke pathogenesis is important to 
improve treatment options. Genetics were always 
considered anchors to fundamental biological mecha-
nisms. But recent major advancements in available 
technologies have revolutionized the way we explore 
genetic information to discover disease mechanisms. 
Stroke genetics has grown from a small field ex-
ploring causes of rare hereditary forms of stroke to 
a dynamic and expanding arena offering insights 
about the pathogenesis of sporadic stroke. Genome-
wide association studies (GWAS), which triggered 
this transformation, have offered not only unique 
windows into disease biology but also unexpected 
opportunities for clinical applications.

Gene discovery: from monogenic stroke  
to novel pathways in sporadic stroke

Early genetic studies found genes that underlie 
forms of Mendelian stroke [2] and pointed to path-
ways involved in stroke pathogenesis that were par-
ticularly relevant for stroke subtypes. Such examples 

include genes encoding proteins related to the extra-
cellular matrix, which were associated with heredi-
tary forms of cerebral small vessel disease (COL4A1, 
COL4A2, HTRA1, NOTCH3) [3]. However, beyond 
Mendelian stroke that is responsible for a very small 
proportion of stroke cases encountered in the clinic 
(around 1-2% of lacunar strokes and <5% in total) 
[4], studies in twins found a higher risk of stroke 
among monozygotic, as compared with dizygotic 
co-twins, thus suggesting a genetic component for 
sporadic stroke cases as well [5]. In further support of 
this, within-family studies showed that stroke is more 
common among individuals with a family history of 
stroke or vascular disease [6]. Before the mapping 
of the human genome and the subsequent develop-
ment of GWASs, several studies explored candidate 
genes that might be associated with stroke risk. 
While such studies occasionally provided important 
insights into stroke biology, most of the described 
associations were not replicated in subsequent GWAS 
analyses [7]. The first GWASs in stroke estimated the 
heritability of stroke prevalence at around 40% for 
ischemic stroke7 and 30% for intracerebral hemor-
rhage [8]. 

More recent GWASs including up to 71,147 cases 
have identified >40 risk loci for stroke risk [9, 10, 
11]. The results of these studies highlight the role 
of specific genes in stroke pathogenesis and can be 
used as the starting point for follow-up functional 
experiments. One example is histone deacetylase 9 
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(HDAC9), which consistently came up as a major 
risk locus for multiple atherosclerotic phenotypes 
including large artery stroke, coronary artery disease, 
and peripheral artery disease and enabled functional 
studies in atherosclerosis-prone mice [12]. Other loci 
involved in stroke pathogenesis include genes im-
plicated in the pathogenesis of major risk factors, 
such as hypertension (e.g. FURIN-FES) and hyper-
cholesterolemia (e.g. LDLR) or genes that have been 
previously implicated in the development of major 
stroke causes, such as atherosclerosis, atrial fibril-
lation, and cerebral small vessel disease [3]. Finally, 
risk loci for stroke are enriched in target genes for 
approved treatments, such as FGA, encoding the 
target for thrombolytic agents, highlighting that 
the discovered risk loci may harbor targets for fu-
ture drug development [10]. Until now, the largest 
GWASs have provided information about common 
variants, encountered in >0.5-1% of the population. 
As the datasets increase and low-cost sequencing 
technologies become more widely available, newer 
methods that also explore rare genetic variation are 
expected to be integrated into future studies. Prelimi-
nary analyses focused on rare variants in the exonic 
regions of specific genes, such as HTRA1, already 
provide important results about the pathogenesis 
of cerebrovascular disease [13].

Polygenic risk scores: a tool ready for clinical 
application?

Beyond new insights into disease biology, the re-
sults from GWAS analyses can be useful in stroke 
risk prediction. While individual genetic variants con-
tribute to disease risk only minimally, by combining 
multiple variants with individually small effects in a 
so-called “polygenic risk score” (PRS; or genomic 
risk score), it is possible to additively quantify ge-
netic predisposition to stroke risk [14]. Multiple novel 
methods have been developed that aim to combine 
information throughout the genome from GWASs 
in an optimal way, so as to maximize the predictive 
power of the tool [15]. For example, the predictive 
performance can be enhanced by combining PRSs for 
stroke with multiple PRSs from traits known to be 
involved in stroke pathogenesis, such as blood pres-
sure, diabetes, and circulating lipids, in a so-called 
meta–genomic risk score. The hazard ratio obtained 
from such a score for stroke is 1.26 per standard de-
viation increment [16], whereas a score for coronary 
artery disease achieved a hazard ratio of 1.71 [17]. 
These scores consistently increase predictive power 
when added to models of established clinical risk fac-
tors [16, 17]. Because genetic information is present 
from birth and remains stable over time, PRSs can be 
assessed by a single genotyping effort long before 
traditional risk factors manifest, thus allowing early 

prognostication and decisions on targeted monitor-
ing [18]. Already post hoc analyses from clinical trials 
suggest that PRSs can predict risk of stroke among 
patients with cardiometabolic risk factors [19]. In-
terestingly, among patients with atrial fibrillation, 
an ischemic stroke PRS can enhance the predictive 
performance of the CHA2DS2-VASc score for stroke 
prediction, thus opening a window for a potential 
clinical application in the decision-making algorithms 
for initiating anticoagulant treatment [19]. Very im-
portant topics remain however open before imple-
menting PRSs: these include sex differences, which 
are not traditionally considered, the reproducibility of 
PRSs across different ancestries, the communication of 
PRS screening results to individuals, and the optimal 
management of individuals at high genetic risk [20].

Mendelian randomization: exploring causal 
associations with human genetic data

Another application of genetic results includes 
the exploration of causal relationships [21]. An in-
strumental variable analysis, called Mendelian ran-
domization, makes use of genetic variants associated 
with a risk factor (genetic instruments) to investigate 
causal associations between the risk factor and a 
disease outcome [22, 23]. The emergence of large-
scale GWASs enabled the discovery of multiple ge-
netic variants that explain an increasing proportion 
of variance in risk factors of interest. Thus, Men-
delian randomization studies may incorporate up 
to hundreds of genetic variants as instruments to 
explore associations between genetic predisposi-
tion to exposure traits and outcomes of interest. As 
genetic information is anchored to conception and 
is not influenced by other potential environmental 
confounders, Mendelian randomization is less prone 
to traditional biases in observational studies, such as 
confounding and reverse causation. However, a num-
ber of assumptions need to be fulfilled in order for 
the genetic variants to be valid instrumental variables: 
[23] the variants should (i) strongly be associated 
with and predict the risk factor of interest, (ii) only 
associate with the outcome through their relation 
to the risk factor and (iii) not relate to confounders 
of the exposure-outcome association. Importantly, 
genetic variants with so-called pleiotropic effects 
on potential confounders in the exposure-outcome 
association may not represent valid instruments [23]. 
Pleiotropy refers to the phenomenon where a gene 
or a genetic variant can influence more than one 
phenotypic traits and may represent a source of bias 
in Mendelian randomization analyses [24]. Develop-
ments in statistical methodology have offered analyti-
cal tools to test the validity of these assumptions and 
correct for deviations from the real effect estimates 
due to pleiotropy [25].
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Mendelian randomization studies have offered 
unique insights into stroke etiology, and particularly 
into the etiological risk factors that underlie spe-
cific diagnostic subtypes [26]. For example, studies 
focused on blood pressure provided evidence for a 
strong association of higher genetically predicted 
blood pressure with all major ischemic stroke sub-
types (large artery, cardioembolic, small vessel stroke) 
and deep intracerebral hemorrhage, but not with 
lobar intracerebral hemorrhage, which is traditionally 
associated with cerebral amyloid angiopathy [27]. 
Furthermore, on top of mean blood pressure, geneti-
cally predicted late-life pulse pressure, which is an 
indicator for arterial stiffness, is also a risk factor for 
ischemic stroke, and particularly large artery stroke 
[28]. Another interesting example includes lipid me-
tabolism. Mendelian randomization studies confirmed 
a potentially causal association of LDL cholesterol 
levels only with large artery stroke [29], whereas for 
small vessel stroke, a protective effect of higher HDL 
cholesterol was more robust [30]. Interestingly, the 
inverse relationships were detected for intracerebral 
hemorrhage [30], further expanding on findings from 
post hoc analyses of randomized trials that lowering 
LDL cholesterol might be a risk factor for hemorrhagic 
stroke [31]. Other interesting insights include the role 
of type 2 diabetes [32], hyperglycemia [32], abdomi-
nal obesity [33], and smoking [34] on large artery and 
small vessel stroke and a rather linear association 
between alcohol consumption and risk of ischemic 
stroke [35]. As sample sizes further increase, unique 
opportunities will emerge for clarifying the role of 
traditional vascular risk factors in stroke pathogen-
esis, but also for discovering novel risk factors [26]. 
Expansions of more elegant analytical epidemiological 
tools to Mendelian randomization, such as multi-
variable and mediation analyses, will also enable a 
more accurate dissection of the pathways that lead 
to stroke [36, 37].

Leveraging genetic data for drug discovery

The drug discovery pipeline is costly and lengthy. 
Despite the increasing investment in drug develop-
ment, only around 5% of cardiovascular disease drugs 
that enter phase I trials make it to market approval 
[38]. Historical retrospective analyses have shown 
that evidence of effect from human genetic studies 
for a candidate protein drug target increases the 
probability for a compound targeting this candidate 
to reach approval by 2- to 4-fold [39, 40]. Perhaps 
the example that most compellingly demonstrates 
this paradigm is PCSK9, which is the target of the 
recently developed proprotein convertase subtili-
sin/kexin type 9 (PCSK9) inhibitors [41]. PCSK9 was 
first described in 2003, when it was implicated in 
familial hypercholesterolemia [42], soon thereafter, 

in 2006, loss-of-function variants in PCSK9 were as-
sociated with lower LDL levels and a lower lifetime 
risk or acute coronary events [43]. Already in 2017 
and 2018, two large-scale phase III trials provided 
robust evidence that two monoclonal antibodies 
against PCSK9 reduced the rates of cardiovascular 
events on top of statins [44, 45] .

An interesting example more focused on stroke is 
the evidence from human genetics on the potential 
atheroprotective effects of anti-inflammatory drug 
targets. A study exploring genetic variation in the 
circulating levels of 41 cytokines and growth factors 
showed genetic variations in the circulating levels 
of monocyte chemoattractant protein-1 (MCP-1 or 
alternatively called CC-chemokine ligand-2, CCL2) to 
be associated with a higher risk of ischemic stroke 
[46], This was particularly the case for large artery 
stroke, but also for other atherosclerotic phenotypes, 
such as coronary artery disease, and myocardial in-
farction [46]. These results were later confirmed in 
prospective cohort studies [47-49] and also agree 
with findings from experimental atherosclerosis mod-
els that support a role of the MCP-1/CCL2 pathway in 
monocyte recruitment to atherosclerotic lesions [50]. 
Beyond MCP-1/CCL2, genetic studies also provided 
evidence for a potentially causal role of interleukin-6 
(IL-6) signaling in large artery stroke [51]. Specifically, 
genetic variants within the gene encoding IL-6 recep-
tor (IL6R) show strong associations with large artery 
stroke, abdominal aortic aneurysm, coronary artery 
disease, and a more favorable cardiometabolic profile 
[51, 52]. These data provide evidence for a causal 
role of IL-6 signaling in atherosclerotic cardiovascular 
disease. Indeed, a monoclonal antibody against IL-6 
has already been tested in phase 2 trials in patients 
with chronic kidney disease and a history of athero-
sclerotic disease [53] and is currently to be tested in 
a phase 3 trial. Other interesting applications include 
phenome-wide association studies, which can reveal 
previously underrecognized side-effects associated 
with drug targets or repurposing opportunities for 
available drugs targeting specific drug candidates 
[52].

Genetics of stroke outcome might point  
to mechanisms related to neuroprotection

A new generation of studies aims to explore ge-
netic determinants of outcomes after stroke. Such 
studies could pinpoint pathways that might serve 
as targets for the development of neuroprotective 
agents, thus addressing the high demand for such 
treatments. However, these efforts are in their first 
steps and still suffer from low power due to the 
small sample sizes that do not suffice for genetic 
discoveries [54]. Stroke outcome genetic studies are 
by design more challenging than studies focusing 
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on stroke risk. They are focused only on cases, they 
need to model clinical variables that strongly predict 
stroke outcome, such as time from stroke onset, 
stroke severity, and stroke etiology, and they need 
to balance between data availability and accuracy of 
outcome measures. For example, dynamic outcome 
measures of early neurological change, such as the 
change in National Institutes of Health Stroke Scale 
(NIHSS) from 6 hours to 24 hours after stroke have 
been proposed as key readouts [55] and might be 
better fits for genetic studies than more traditional 
readouts used in clinical research, such as 3-month 
modified Rankin scale [54]. Although still at its birth, 
the field of stroke outcome genetics is already grow-
ing and has provided some results about pathways of 
potential interest for brain injury, repair, and recovery 
following ischemic stroke, which demonstrate the 
feasibility of the approach [56-58].

Future directions and conclusions

Over the last two decades, the field of medical and 
population genetics in cerebrovascular disease has 
been growing rapidly. As a result, several opportuni-
ties for applications have emerged that could improve 
stroke care in the near-term future. The advance-
ments in the field have been the result of large-scale 
international collaborations, such as the Interna-
tional Stroke Genetics Consortium, and biobanking 
initiatives, such as the UK Biobank, Biobank Japan, 
and the China-Kadoorie Biobank. The broad data 
sharing mentality of the field has critically boosted 
innovation and accelerated paths to discovery. Still, 
important developments are underway, which are 
worth mentioning. Key initiatives to integrate data 
from ancestries other than Europeans are expected 
to lead to new discoveries and to boost the perfor-
mance of PRSs in risk prediction. There is a major 
need for diversification in genetic research, as most 
data come from analyses in European populations. 
Large benefits are also to be expected by genetic 
analyses of endophenotypes of cerebrovascular 
disease, such as MRI biomarkers of cerebral small 
vessel disease. The integration of other large-scale 
data, such as transcriptomics and proteomics, into 
genetic research will allow us to link the associa-
tions between genetic variants and disease risk to 
biochemical footprints that will enhance our under-
standing of disease mechanisms. Finally, important 
follow-up functional experiments that will enhance 
our understanding about the mechanisms through 
which identified variants influence disease risk will 
accelerate the translation of genetic discoveries to 
novel therapeutics.
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