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Abstract

Precision medicine is an emerging medical approach which aims to individualize therapies in patients with 
complex, multifactorial disease in order to increase drug effectiveness and prevent adverse drug reactions. 
Among high-throughput -‘omic technologies (genomics, proteomics, metabolomics), pharmacogenomics 
investigates the application of genomics to personalize drug selection, according to the patient’s genetic 
traits. Genetic variations influence the pharmacokinetic and pharmacodynamic profile of many therapies 
in different fields in neurology, such as immune-mediated disease, neurodegenerative disease and ischemic 
stroke. Until now, available clinically useful pharmacogenomic biomarker does not exist to distinguish 
between responders and non-responders regarding MS treatments. In patients with stroke who receive 
clopidogrel, CYP2C19 testing in clinical practice has not been established yet. In Parkinson’s disease, MTH-
FR gene mutations may be correlated with higher incidence of hyperhomocysteinemia due to L-dopa 
treatment. Finally, apolipoprotein E (APOE) gene has been linked with Alzheimer’s disease pathogenesis 
and is regarded as a reference gene in several pharmacogenetic studies. In the era of precision medicine, 
educating clinicians on pharmacogenomics may assist with the implementation of genetic information in 
the clinical practice, thus enhancing genetically-guided treatment decisions.
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Introduction

Precision medicine is an emerging medical ap-
proach according to which the patients’ genetic 
profile, lifestyle and environment are taken into con-
sideration, in order to provide personalized treatment 
[1]. The potential of precision medicine is seemingly 
unlimited as scientists from multiple fields use high-
throughput ‘omic technologies to improve patient 
outcomes. -‘Omic technologies (genomics, pro-
teomics, metabolomics etc.) generate a large quantity 
of data, thus offering a molecular fingerprinting of 
a patient, aiming to assist with and/or guide clinical 
decisions [2]. One of the main developing applica-
tions of this novel approach is pharmacogenomics. 

Response to a drug may be variable among pa-
tients, related both to pharmacokinetic (phases of 
absorption, distribution, metabolism) or pharmaco-
dynamic (drug’s mode of action) factors, and this 
variability may also depend on environmental and 
genetic factors [3]. Pharmacogenomics investigates 
the application of genomics into personalized drug 
selection, aiming to increase drug effectiveness and 
prevent adverse drug reactions [4]. In this respect, 
pharmacogenomic analysis may adjust drug selec-
tion according to the patient’s genetic traits [5]. 
Pharmacogenomics have been developed within a 

short time over the last 50 years, upon progress in 
human genome sequencing, as it was first assumed 
that genetics might affect drug response phenotypes 
[6]. It became clear that deviation in drug response 
could be partly explained by the effects of genetic 
inheritance. Over the last twenty years, the Human 
Genome Project was brought to completion allowing 
for a robust evolution in pharmacogenomics, espe-
cially facilitated through the development of tech-
niques such as Next Generation Sequencing (NGS) 
and genome-wide association studies (GWAS) [4]. 
Up to now, international scientific associations have 
developed and approved guidelines concerning sev-
eral drug-gene interactions that are accessible at no 
cost as an on-line source (www.pharmgkb.org) [7].

Pharmacogenomics in Neurology

Substantial therapeutic progress has been achieved 
in various fields in neurology, such as neuroimmuno-
logical disease, neurodegenerative disease, ischemic 
stroke and epilepsy which can, however, be linked 
with potentially severe adverse events and high fi-
nancial cost. Pharmacogenomics thus addresses an 
increasing need to individualize therapeutic choices 
and to maximize the benefits against risks [3].
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Pharmacogenomics in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic autoimmune 
demyelinating disease of the central nervous system 
(CNS). It is classified in three types, the relapsing 
remitting form (RRMS) (80-85% of patients) which 
may evolve into secondary progressive form (SPMS) 
and the primary progressive MS (PPMS) (10-15% of 
patients) [8]. According to current evidence, 30-50% 
of patients are non-responders to first-line therapies 
and inter-individual genetic variability may, at least 
in part, contribute to this heterogeneity [9]. Until 
now, available clinically useful pharmacogenomic 
biomarker does not exist in order to timely distinguish 
between responders and non-responders regarding 
MS treatments [8].

Interferon-beta (IFNb) is a widely prescribed im-
munomodulatory treatment for MS. IFNb binds to 
specific receptors on the surface of the immune sys-
tem cells inhibiting the synthesis of inflammatory 
cytokines and increase the production of anti-inflam-
matory ones [10]. Several gene studies investigated 
the association of genetic variants with response 
to IFNb, yielding inconclusive results [11-14]. A few 
recent whole-genome association studies (GWAS) 
investigated the association between IFNb treatment 
response and genetic variability with inconsistent 
findings, without verifying previously conducted 
candidate-gene studies [11, 12, 13, 14] reviewed 
in (8). Regarding the development of neutralizing 
antibodies (NAbs) against IFNb, their use as an early 
pharmacogenetic biomarker is limited and it seems 
to account for resistance towards IFNb treatment in 
a minority of patients [15].

Glatiramer acetate (GA) is the first non-interferon 
approved treatment for RRMS. It acts on innate and 
acquired immune system and it has been linked with 
a shift in the T-effector phenotype from pro-inflam-
matory (T-helper 1 and 17 cells) to anti-inflammatory 
(regulatory T cells and T-helper 2 cells) [8]. Human-
leucocyte antigen (HLA) class I/II polymorphisms are 
positively associated with response to treatment with 
GA, more specifically, the HLA DRB1 * 1501 [16, 
17]. Two single nucleotide polymorphisms (SNPs), 
rs71878 in the T-cell receptor beta (TCRB) gene and 
rs2275235 in the cathepsin S (CTSS) gene were sig-
nificant associated with GA treatment in one study 
[18]. Moreover, one GWAS study on GA treatment 
response demonstrated significant associations 
between GA treatment response and the ensuing 
genes: ZAK (rs139890339), UVRAG (rs80191572), 
MBP (rs1789084) and HLA-DQB2 (rs28724893), [18, 
19].

Mitoxantrone, a cytotoxic agent that inhibits DNA 
repair, acts on macrophages B cells and T cells, and 
suppresses their proliferation as well as pro-inflam-
matory cytokine production [20]. Two pharmacoge-
nomics studies provided conflicting results [21, 22].

Natalizumab, a humanized monoclonal antibody, 
prevents the entry of lymphocytes into the CNS [20]. 
To our knowledge, one pharmacogenetic study that 
has been conducted reported that the wild-type 
genotype or heterozygous presence of a polymor-
phism for NQO1 or GSTP1 gene is possibly related 
to beneficial clinical outcomes upon treatment with 
natalizumab [23].

Siponimod, a particular sphingosine-1-phosphate 
(S1P) receptor (S1P1 and S1P5) inhibitor blocks the 
egress of lymphocytes from lymphoid system cells 
and thus it mitigates the entry of T-lymphocytes into 
the CNS. Siponimod has been studied in phase II 
and phase III trials in RRMS and SPMS, respectively. 
Siponimod’s metabolism is susceptible to variability 
in cytochrome P450 (CYP) activity among individuals, 
involving mainly the CYP2C9 and CYP3A4 enzymes. 
Hence, genetic testing is required before treatment 
[24].

Several other disease-modifying treatments for 
MS, such as dimethyl fumarate, teriflunomide or 
fingolimod do not exhibit known variable pharma-
cogenomic associations to clinical outcome [8].

Pharmacogenomics and Stroke

Genetic variations influence the pharmacokinetic 
and pharmacodynamics profile of several therapies 
for primary and secondary stroke prevention [25].

Aspirin is considered to be the most commonly 
prescribed antiplatelet therapy for stroke prevention 
(primary and secondary). Aspirin irreversibly inhib-
its COX (cyclooxygenase)-1 and thromboxane A2 
production. Aspirin resistance has been associated 
with several genetic variants, most well studied be-
ing the PlA1/A2 of the GPIIIa (glycoprotein IIIa) gene 
and the COX-I polymorphisms [26-28]. However, the 
results are inconsistent and more extensive random-
ized controlled trials (RCTs) are required in order to 
reach safe conclusions.

Clopidogrel is an antiplatelet agent able to dimin-
ish the risk of recurrent ischemic stroke. For its an-
tiplatelet action, it requires conversion to an active 
metabolite by cytochrome P-450 (CYP) enzymes. 
The majority of genetic studies have focused on the 
hepatic CYP2C19 enzyme. A reduced-function muta-
tion in at least one allele of this enzyme (CYP2C19 
* 2 or CYP2C19 * 3) is related to 33% reduction 
of plasma concentration of the active metabolite 
compared to the wild type genotype [29] and an 
increased risk of vascular events [30]. In contrast, 
gain-of-function allele (CYP2C19 * 17) is related 
to higher levels of active metabolite of clopidogrel 
and equivalent risk of bleeding [31]. However, in a 
meta-analysis including 4 placebo-controlled RCTs, 
the loss-of-function mutation did not affect the risk 
of vascular events or bleeding [32]. Due to the uncer-
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tainty in the advantages of treating patients in the 
context of their CYP2C19 carrier status and taking 
into consideration that other therapeutic agents, 
such as ticagrelor and prasugrel may be considered 
apart from clopidogrel, CYP2C19 testing in clinical 
practice has not been established [33]. Up to date, no 
RCTs have estimated the efficacy of CYP2C19 testing 
in patients with ischemic stroke. More large-scale, 
well-designed trials are needed [34].

Statins are of great importance for the preven-
tion and treatment of atherosclerotic cardiovascular 
disease. They act through inhibition of HMG-CoA 
reductase. However, some patients do not respond 
favorably and a number of them present with side-
effects, most commonly statin-associated muscle 
disorder [35]. Of the plethora of candidate gene stud-
ies and GWASs, the SLCO1B1 521C genetic variant 
is, at present, the only clinically applicable pharma-
cogenetic test concerning toxicity from statins. The 
SLCO1B1 gene expresses a transport protein found 
in liver cells and this polymorphism seems to associ-
ate with myopathy following the use of simvastatin 
[36]. Furthermore, taking into consideration that 
lovastatin, atorvastatin, and simvastatin are me-
tabolized mainly by cytochrome P450 3A enzymes, 
the US Food and Drug Administration (FDA) warns 
medical doctors about the risk of simvastatin muscle 
toxicity linked with concurrent use of CYP3A-inhib-
iting agents, such as clarithromycin, fluoxetine and 
omeprazole. Nevertheless, studies investigating the 
possible relation between CYP3A polymorphisms 
and the risk of statin side effects present inconsis-
tent results. Therefore, routine CYP3A testing is not 
recommended at present [36].

Regarding the use of anticoagulants in patients 
with atrial fibrillation, numerous studies have focused 
on the pharmacogenetics of vitamin K antagonists 
(VKAs), particularly warfarin. 

Warfarin is mainly metabolized in liver by the mi-
crosomal enzyme CYP2C9 and inhibits vitamin K me-
tabolism targeting the vitamin K epoxide reductase 
complex subunit 1 (VKORC1) enzyme [37]. Addition-
ally, the CYP4F2 gene encodes a vitamin K oxidase 
[38]. VKORC1, CYP2C9 and CYP4F2 polymorphisms 
are the genetic variants that have been studied the 
most [34]. Carriers of rare mutations in the protein-
coding region of the VKORC1 gene [VKORC1:c.76G 
> A (Ala26 → Thr), VKORC1:c.76G > A (Ala26 → 
Thr), VKORC1: c.84C > T (Val29 → Leu), VKORC1: 
c. 85G > T (Val29 → Leu), VKORC1: c.107A > G 
(Asp36 → Gly), VKORC1: c.155C > G (Ser52 → Trp), 
VKORC1: c.167C>T (Ser56 → Phe), VKORC1: c.176G 
> T (Trp59 → Leu), VKORC1: c.177G > T (Trp59 → 
Cys), VKORC1: c.196G>A(Val66 → Met), VKORC1: 
c.197T > G (Val66 → Gly), VKORC1: c.212G > C 
(Gly71 → Ala), VKORC1: c.230A > G (Asn77 → Ser), 
VKORC1: c.229A > T (Asn77 → Tyr), VKORC1: c.368T 

> A (Ile123 → Asn), VKORC1: c.415T > C(Tyr139 → 
His)], are associated with oral anticoagulant resis-
tance and higher dosage requirement, exhibiting a 
greater risk of unfavorable ischemic events’’ [39, 40]. 
Instead, carriers of the more common rs9923231 
(VKORC1) variant require a lower dose of oral anti-
coagulant (39). A loss-of-function CYP2C9 mutation 
has been linked with reduction in warfarin metabo-
lism and puts carriers at increased risk for bleeding 
[41]. CYP4F2 variant carriers require an increased 
warfarin dose [38]. Based on the results of recent 
trials, it is still not certain whether the integration of 
pharmacogenetic testing in those receiving warfarin 
is clinically effective and improves patient manage-
ment [34].

Regarding non-vitamin K antagonist oral antico-
agulants (NOACs) so far, a single GWAS has been 
conducted to examine the influence of genetics 
on dabigatran pharmacokinetic. It was based on 
participants from the RE-LY trial (dabigatran versus 
warfarin) [42] and revealed three single nucleotide 
polymorphisms (SNPs) (2 in the CES1 gene and 1 
in the ABCB1 gene) that are associated with the 
fluctuation in plasma levels of dabigatran [43]. To 
our knowledge, no GWASs have been conducted to 
examine the impact of genetic variability on treat-
ment with other NOACs such as rivaroxaban, apixa-
ban and edoxaban. Large-scale studies are lacking; 
therefore, recommendations cannot be made for 
NOACs yet [44]. 

Pharmacogenomics in neurodegenerative 
disorders

More than 50 different neurodegenerative dis-
orders (NDDs) can affect humans worldwide. Al-
zheimer’s disease (AD) and Parkinson’s disease (PD) 
are among the most common and account for high 
cost for the society [45].

Parkinson’s disease (PD) is on top of the neuro-
degenerative movement disorders and the second 
most common neurodegenerative disease nowadays 
[46, 47]. PD is pathologically characterized by the 
intracellular aggregation of α-synuclein and the loss 
of dopaminergic neurons [48]. The cornerstone of 
pharmacologic therapy is dopamine replacement 
with L-dopa in combination with dopamine recep-
tor agonists, monoamine oxidase (MAO) inhibitors 
or catechol-O-methyltransferase (COMT) inhibitors 
[49]. There is a significant degree of difference in 
drug response which is linked to the subtypes of the 
disease and the patients’ genetic variability. Unfortu-
nately, despite the advances of pharmacogenomics, 
there are currently no guidelines in the daily medical 
practice of treating PD taking into account pharma-
cogenomics. Moreover, a search in the pharmacoge-
nomics knowledge-base (pharmaGKB) retrieves only 
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ten clinical annotations most of which are associated 
with low level of evidence [50].

Levodopa (L-dopa), combined with dopa decarboxyl-
ase inhibitors, augments the availability of dopamine 
in the CNS. The COMT enzyme is involved in levodopa 
metabolism. Most studies have focused on the COMT 
gene polymorphisms but their results are conflicting, 
thus limiting their potential for clinical application 
[50]. SNPs of the genes involved in the mTOR pathway 
are linked with either increased or reduced chance of 
treatment-induced motor symptoms, nevertheless 
larger cohort studies are required [50].

Hyperhomocysteinemia and impulse control dis-
order (ICD) are well known complications of dopa-
minergic treatment with L-dopa or dopamine recep-
tor agonists (DA). They are associated with genetic 
factors. MTHFR gene mutations may increase the 
incidence of hyperhomocysteinemia during L-dopa 
treatment and this effect may be attenuated by co-
treatment with COMT inhibitors [51]. For younger 
patients who initiate therapy with dopamine receptor 
agonists (DA), polymorphisms in Dopamine recep-
tor 1 (DRD1), Opioid Receptor Kappa 1 (OPRK1), 
Opioid Receptor Mu 1 (OPRM1) and COMT genes 
were linked with a high risk of ICD [52]. An DRD3 
mutation was also related to increased incidence of 
ICD during L-dopa therapy [53].

Regarding the pharmacogenomic properties of 
COMT and MAO inhibitors sufficient evidence for 
clinical recommendations is lacking [50].

In relation to the etiology of PD, genetics play a 
role both in the multifactorial sporadic form of the 
disease, as well as in the single-gene, rare inherited 
forms of PD [46]. Most studied single gene muta-
tions implicate genes encoding α-Synuclein (SNCA), 
Leucine-rich repeat kinase 2 (LRRK2), parkin RBR 
E3 ubiquitin-protein ligase (PRKN), vacuolar protein 
sorting-associated protein 35 (VPS35), PTEN-induced 
putative kinase 1 (PINK1), glucocerebrosidase (GBA) 
and oncogene DJ-1 [54]. Published studies investigat-
ing levodopa treatment in patients with LRRK2, SNCA 
and GBA genes mutations resulted in inconsistent 
data [50]. PRKN, PINK1 and DJ1 gene mutations were 
linked with a steady L-dopa response at lower dose, 
but also with early treatment-induced motor symp-
toms (dyskinesias and dystonia) [50]. In this way, the 
clinical phenotype of early treatment-induced motor 
symptoms may draw suspicion of these mutations 
and guide genetic testing before expected.

Alzheimer’s disease (AD) is considered to be the 
most common neurodegenerative disease and the 
dominant form of dementia (>50%) [55]. Genomic 
defects, epigenetic changes and multiple environ-
mental factors precipitate pathogenic cascades lead-
ing to dementia.

Three acetylcholinesterase inhibitors (AChEIs), 
donepezil, galantamine and rivastigmine have been 

approved for the treatment of AD. Memantine, an 
N-Methyl-D-Aspartate (NMDA) receptor antagonist, 
was approved by the FDA in 2003 [56] and, recently, 
aducanumab was approved by the US FDA [57]. Most 
pharmacogenomics studies on AD focus on these 
drugs. Furthermore, apolipoprotein E (APOE) gene 
polymorphisms contribute to the pathogenesis of 
AD and it is regarded as the reference gene in the 
majority of pharmacogenetic studies [55].

Donepezil, the most frequently prescribed AChEI, is 
a major substrate of CYP2D6, CYP3A4, acetylcholin-
esterase (ACHE) and UGTs (glucuronosyltransferase 
family polypepetides). Carriers of the APOE-4 seem 
to be poor responders to donepezil, whereas APOE-3 
carriers seem to respond most optimally. Moreover, 
CYP2D6 normal metabolizers are optimal responders 
to donepezil, whereas CYP2D6-poor metabolizers 
are also poor responders to donepezil [55]. Carriers 
of the coomon CYP2D6 rs1080985 variant are poor 
donepezil responders [58]. Donepezil is not recom-
mended for APOE-ε4/Butyrylcholinesterase K (BCHE-K 
*) carriers who present with an earlier disease onset 
and a hastened cognitive decline [59].

Rivastigmine is an inhibitor of both acetylcholines-
terase (ACHE) and butyrylcholinesterase (BCHE) [60]. 
APOE, amyloid beta precursor protein (APP), choline 
acetyltransferase (CHAT), ACHE, BCHE, cholinergic re-
ceptor nicotinic alpha 4 (neuronal) (CHRNA4), cholin-
ergic receptor, nicotinic, beta 2 (neuronal) (CHRNB2), 
and microtubule associated protein tau (MAPT) vari-
ants affect rivastigmine both pharmacokinetically and 
pharmacodynamically. Moreover, patients carrying 
the BChE K-variant (rs1803274) show poor clinical 
response to rivastigmine [55].

Memantine is an NMDA receptor antagonist. APOE, 
presenilin 1 (PSEN1), and MAPT variants may have 
an effect on the role of memantine in AD. The co-
administration of CYP2B6 substrates may decrease 
the metabolism of the memantine by 65% [55].

Aducanumab is a monoclonal antibody targeting 
the N-terminus of the amyloid beta peptide (Aß). It is 
administered at monthly intravenous infusions [57]. 
According to recommendations of an Expert Panel, 
aducanumab is indicated for patients diagnosed with 
early AD. Administration of aducanumab has been 
associated with an increased rate of amyloid-related 
imaging abnormalities (ARIA) either with brain effu-
sion or hemorrhage. These 2 types of ARIA present 
more common in APOE ε 4 (APOE-4) polymorphism 
carriers and may be more severe in APOE-4 homozy-
gotes [61]. However, the prescription does not strictly 
require APOE genotyping. Moreover, aducanumab 
dosing scheme and monitoring instructions do not 
differ between APOE ε 4 carriers and non-carriers 
[57]. However, an informative discussion with the pa-
tient and the care partner is recommended and APOE 
genotyping may be sought prior to aducanumab 
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initiation. In case of the presence of APOE4 poly-
morphism, the clinician should discuss the increased 
likelihood for ARIA [57].

Pharmacogenomics in epilepsy

There is significant variation in the response to 
antiepileptic treatment in terms of seizure control 
and adverse reactions in people suffering from epi-
lepsy [62]. Genetic factors contribute a lot to this 
variation [63].

The advances in the field of the genetics of the 
epilepsies provide the base for a new era in the treat-
ment of epilepsy according to precision medicine [64].

However, guidelines on clinical management of 
individual epileptic patients are lacking.

Genetic factors and response to AEDs

Most antiepileptic drugs (AEDs) are metabolised 
by the cytochrome P450 (CYP) family. Allelic variants 
of some of these enzymes encode isoforms which 
differ in activity leading to altered serum AED con-
centrations.

An example to this variability are polymorphisms in 
CYP2C9 and CYP2C19 genes [65]. The phenyntoin 
metabolism at a rate of 90% is mediated by CYP2C9. 
Carriers of CYP2C9 alleles, which encode enzymes 
with lessened activity metabolize phenytoin more 
slowly and carry an increased risk of concentration-
dependent neurotoxicity. CYP2C9 * 3 (rs1057910(C)) 
and CYP2C9 * 2 (rs1799853) polymorphisms are the 
best recorded [66, 67].

A GWAS of cases with cutaneous adverse reac-
tions being on phenytoin found out that CYP2C9 * 3 
(rs1057910) polymorphism is significantly associated 
with these adverse events [68]. Nevertheless, testing 
for CYP2C9 genetic variants is not routine practice.

Studies in Asian populations found that CYP2C19 
polymorphisms are associated with the serum con-
centration of the active metabolite of clobazam, N-
clobazam, with clinical effectiveness [64].

Regarding valproate (VPA), only 15-20% of its dose 
is metabolized by CYP enzymes. The main enzyme is 
CYP2C9 and to a lesser extent CYP2A6 and CYP2B6 
[69].

Population study in Japan found that CYP2C19 
genotypes are responsible for some of the adverse 
reactions after treatment of epileptic patients with 
zonisamide [70]. 

CYP3A4 is considered as the main enzyme respon-
sible for the carbamazepine metabolism. Although 
CYP3A4 has very known polymorphisms these are 
not frequent enough to although to cause significant 
inter-individual variability in vivo [71].

A study in Han people with epilepsy discovered 
that sodium voltage-gated channel alpha subunit 1 
(SCN1A), ATP Binding Cassette Subfamily C Member 

2 (ABCC2) and UDP Glucuronosyltransferase Family 
2 Member B7 (UGT2B7) genetic polymorphisms are 
related with oxcarbazepine maintenance doses [72].

Human leukocyte antigen (HLA) alleles  
and AEDs side effects

Genetic polymorphisms, especially in certain human 
leukocyte antigen (HLA) alleles, have also been linked 
with the risk of idiosyncratic adverse reactions to AEDs.

HLA-B * 15:02 allele has been reported to be 
strongly associated with the Stevens-Johnson syn-
drome in Han Chinese people on treatment with 
carbamazepine [73].

Guidelines recommend that patients of South Asian 
origin be tested for HLA-B * 15:02 allele carriage be-
fore treatment with carbamazepine and carriers of 
this allele optimally avoid carbamazepine [74, 75].

Association has also been found between HLA-
B * 15:02 allele and the risk of Stevens-Johnson 
syndrome in patients treated with phenytoin [76], 
oxcarbazepine [77] and lamotrigine [76].

HLA-A * 31:01 is another allele that has been 
linked with elevated risk of cutaneous adverse reac-
tions, such as maculopapular exanthema or blistering, 
in European and Japanese patients treated with car-
bamazepine [78, 79]. However, its testing in routine 
practice has recently been regarded as cost-effective.

A summary of all the findings is presented in Table 1.

Conclusions

With the progress in precision medicine, Neurol-
ogy has entered a new era in relation to several 
therapeutic approaches. Among ‘-omic technolo-
gies, pharmacogenomics plays an important role as 
it may enable drug selection considering the patient’s 
genetic profile.

As healthcare shifts from a traditional pathway to-
ward precision medicine, standardized pharmacoge-
nomic education for clinicians becomes necessary. 
Recently, therapeutic agents have been developed in 
the context of pharmacogenomic biomarkers related 
to their safety and efficacy. In the era of precision 
medicine, educating clinicians on pharmacogenom-
ics may assist with the implementation of genetic 
information in the clinical practice, thus enhancing 
genetically-guided treatment decisions.

Abbreviation List

ACHE:	 Acetylcholinesterase
AD:	 Alzheimer’s disease
APOE:	 Apolipoprotein E
APP:	 Amyloid Beta Precursor Protein
ARIA:	 amyloid-related imaging abnormality
BCHE:	 butyrylcholinesterase
CHAT:	 choline acetyltransferase
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Table 1. Clinical effects associated with specific gene and genetic variants according to neurological disease 
and medication

Disease Treatment
Polymorphism / 

Genes 
Clinical effects References

MS IFNβ candidate gene studies: inconclusive results; GWAS: inconsistent 
findings; NAbs against IFNb: resistance towards IFNb treatment

[11-15, 80-84]

GA HLA DRB1 * 1501 positively associated with GA treatment response [16, 17]

rs71878 in TCRB gene significantly associated with GA treatment [18]

rs2275235 in CTSS gene significantly associated with GA treatment [18]

UVRAG (rs80191572) significantly associated with GA treatment [18, 19]

HLA-DQB2 
(rs28724893)

significantly associated with GA treatment [18, 19]

MBP (rs1789084) significantly associated with GA treatment [18, 19]

ZAK (rs139890339) significantly associated with GA treatment [18, 19]

Mitoxantrone   conflicting results [21, 22]

Natalizumab wild-type genotype or 
heterozygous presence 
of one polymorphism 
for NQO1 or GSTP1 

possibly related to beneficial clinical outcomes upon treatment 
with natalizumab

[23]

Siponimod CYP2C9; CYP3A4 affect Siponimod’s metabolism [24]

Stroke Aspirin PlA1/A2 of the GPIIIa 
gene

associated with aspirin resistance; inconsistent results; more 
large-scale RCTs required

[26-28]

COX-I polymorphisms associated with aspirin resistance; inconsistent results; more 
large-scale RCTs required

[26-28]

Clopidogrel reduced-function muta-
tion in CYP2C19 * 2 or 
CYP2C19 * 3

33% reduction of plasma exposure to the active metabolite 
compared to the wild type genotype and increased risk of 
vascular events (?); more large-scale trials needed 

[29, 30, 32, 34]

gain-of-function allele 
CYP2C19 * 17

increased levels of clopidogrel active metabolite and increased 
risk of bleeding; more large-scale trials needed

[31, 34]

Statins SLCO1B1 521C genetic 
variant

associated with myopathy following the use of simvastatin; the 
only clinically relevant pharmacogenetic test concerning statin 
toxicity

[36]

CYP3A polymorphisms studies on its possible effects on the risk of statin side effects: 
inconsistent results

[85]

VKAs 
and 
Warfarin

VKORC1 mutation resistance and increased risk of unfavorable ischemic events [39, 40]

loss-of-function CYP2C9 
mutation

reduction in warfarin metabolism and increased risk of bleeding [41]

CYP4F2 variant increased warfarin dose required [38]

NOACs 3 SNPs (2 in CES1 gene 
and 1 in ABCB1 gene)

associated with the variability in plasma levels of dabigatran; 
large-scale studies needed

[43]

PD L-dopa COMT polymorphisms conflicting results [86-95]

SNPs of mTOR pathway-
related genes

either increased or reduced risk for treatment-induced dyskine-
sias; larger cohort studies required

[96-108]

MTHFR mutations may increase the incidence of hyperhomocysteinemia [51]

DRD3 mutation increased incidence of ICD [53]

LRRK2 gene mutations inconsistent data [109-112]
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Table 1. Continuity

Disease Treatment
Polymorphism / 

Genes 
Clinical effects References

PD GBA gene mutations inconsistent data [113-116]

SNCA mutations inconsistent data [117]

PRKN mutations steady L-dopa response at lower dose; early treatment-induced 
motor symptoms (dyskinesias and dystonia)

[118-120]

PINK1 mutations steady L-dopa response at lower dose; early treatment-induced 
motor symptoms (dyskinesias and dystonia)

[118]

DJ1 mutations steady L-dopa response at lower dose; early treatment-induced 
motor symptoms (dyskinesias and dystonia)

[121-123]

DA DRD1 high prediction rate of ICD [52]

OPRK1 high prediction rate of ICD [52]

OPRM1 high prediction rate of ICD [52]

polymorphisms in 
COMT genes

high prediction rate of ICD [52]

COMT
inhibitors 

  insufficient evidence for clinical recommendations [124-128] 

MAO 
inhibitors 

  insufficient evidence for clinical recommendations [129]

AD Donepezil APOE-4 poor responders [55]

APOE-3 optimal responders [55]

CYP2D6 (rs1080985) poor responders [58]

APOE-ε4/BCHE-K * donepezil not recommended [59]

Rivastigmine BChE K (rs1803274) poor clinical response [55]

APOE affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

APP affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

CHAT affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

ACHE affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

BCHE affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

CHRNA4 affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

CHRNB2 affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

MAPT affect pharmacokinetics and pharmacodynamics of rivastigmine [55]

Memantine APOE may influence the effect of memantine in AD [55]

PSEN1 may influence the effect of memantine in AD [55]

MAPT may influence the effect of memantine in AD [61]

Aducanumab APOE-4 increased rate of ARIA; more severe in homozygotes [61]

Epilepsy Phenytoin CYP2C9 * 2 (rs1799853) slower metabolism of phenytoin, concentration-dependent 
neurotoxicity

[66, 67]

CYP2C9 * 3 
(rs1057910(C)) 

slower metabolism of phenytoin, concentration-dependent 
neurotoxicity

[66, 67]

CYP2C9 * 3 (rs1057910) cutaneous adverse reactions [68]

HLA-B * 15:02 allele risk of Stevens-Johnson syndrome [76]
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CHRNA4:	� Cholinergic Receptor Nicotinic Alpha 4 
Subunit

CHRNB2:	� Cholinergic Receptor Nicotinic Beta 2 
Subunit

COMT:	 catechol-O-methyltransferase
COX:	 cyclooxygenase
CYP:	 cytochrome	
DA:	 dopamine agonist
DJ1:	 Protein DJ-1	
DRD:	 Dopamine Receptor D
GA:	 glatiramer acetate
GBA:	 Glucosylceramidase Beta
GWAS:	 Genome-Wide Association Study
HLA:	 Human Leukocyte Antigens
ICD:	 idiopathic cervical dystonia
IFNβ:	 interferon-β	
LRRK:	 Leucine-rich repeat kinase
MAO:	 monoamine oxidase
MAPT:	 Microtubule Associated Protein Tau
MBP:	 myelin basic protein

MS:	 Multiple Sclerosis
MTHFR:	 methylenetetrahydrofolate reductase
mTOR:	 mammalian target of rapamycin
Nabs:	 neutralizing antibodies
NOACs:	 novel oral anticoagulants
OPRK:	 Opioid Receptor Kappa 
OPRM:	 Opioid Receptor Mu
PINK:	 PTEN Induced Kinase
PRKN:	 Parkin RBR E3 Ubiquitin Protein Ligase
PSEN:	 Presenilin	
RCTs:	 randomization - controlled studies
SNCA:	 Synuclein Alpha
SNPs:	 single-nucleotide polymorphism
VKAs:	 vitamin K antagonists
ZAK:	 zipper containing kinase AZK
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