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Περίληψη

Ο ιδιοπαθής υδροκέφαλος φυσιολογικής πίεσης (iNPH) είναι μια νοσολογική οντότητα που εμφανίζεται συ-
χνά σε ηλικιωμένο πληθυσμό προκαλώντας διαταραχή στη βάδιση ή/και στην ισορροπία, γνωστική έκπτωση 
και ακράτεια ούρων. Ο επιπολασμός του iNPH είναι περίπου 3,7%. Υπάρχουν πολλοί ασθενείς οι οποίοι 
δεν λαμβάνουν ποτέ βαλβίδα. Αυτό οφείλεται στο γεγονός ότι η νόσος έχει ύπουλη έναρξη και εξελίσσεται 
σταδιακά, ενώ η πλειοψηφία των ασθενών δικαιολογούν τα συμπτώματα τους με την αύξηση της ηλικίας 
τους. Η διαφορά σε σχέση με νευροεκφυλιστικές παθήσεις είναι ότι αντιμετωπίζεται με χειρουργική επέμ-
βαση παροχέτευσης βελτιώνοντας τα συμπτώματα μέχρι και 84%, και γι' αυτό κατατάσσεται στις δυνητικά 
«αναστρέψιμες άνοιες». Ως εκ τούτου, ο iNPH είναι μια μεγάλη πρόκληση για τους νευρολόγους λόγω των 
δυσκολιών στη διάγνωση ασθενών που είναι κατάλληλοι για χειρουργική επέμβαση και πρόσφατα δημοσι-
ευμένες μελέτες επικεντρώθηκαν στον εντοπισμό αυτών των ασθενών. Η φυσική πορεία του iNPH είναι μια 
σταδιακή επιδείνωση της συμπτωματολογίας με επιδείνωση της βάδισης και έκπτωση της νοητικής λειτουρ-
γίας με συνοδό διαταραχή της ούρησης. Η άλλη πρόκληση είναι να κατανοήσουμε τον παθοφυσιολογικό 
μηχανισμό πίσω από αυτήν την ασθένεια. Οι κατευθυντήριες γραμμές του iNPH αλλάζουν και υπάρχει συνε-
χής προσπάθεια διαφοροποίησης των ασθενών με iNPH από νευροεκφυλιστικές παθήσεις. Η έλλειψη σαφών 
κριτηρίων για τη διάγνωση του iNPH καθιστά την αναγνώριση των ασθενών με iNPH δύσκολη. Ασθενείς με 
iNPH χωρίς θεραπεία μπορούν εν μέρει να επιτύχουν τα ίδια μετεγχειρητικά αποτελέσματα που θα είχαν, αν 
είχαν υποβληθεί σε χειρουργική επέμβαση με βαλβίδα παροχέτευσης έγκαιρα. Στόχος αυτού του άρθρου 
είναι να ανασκοπήσει σύντομα τη βιβλιογραφία και να αναζητήσει έναν πρακτικό τρόπο σκέψης.
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Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is a disease that often appears in elderly population caus-
ing gait and/or balance disturbance, cognitive decline and urinary incontinence. The prevalence of iNPH 
is around 3.7% and there are a lot of unidentified patients who never receive a shunt. The disease has 
an insidious onset and progress gradually and the majority of patients use as a possible cause age related 
reasons. The difference with neurodegenerative diseases is that it is treatable with a shunt surgery and this 

CASE REPORT ΕΝΔΙΑΦΕΡΟΝ ΠΕΡΙΣΤΑΤΙΚΟ



19

Archives of Clinical Neurology 31:6-2022, 18-29

Pathophysiology, biomarkers and radiological features in Idiopathic Normal Pressure Hydrocephalus

INTRODUCTION

Short History

The recognition and discovery that there was 
“water” in the center of the brain impressed the 
doctors from the beginning of medicine history since 
thousands of years. Doctors tried to find the cause 
and explanation of the existence of water in the 
brain center. In ancient Greece the characteristic 
malformation caused by the increase of “water” in 
oversized head and the “Olympius” face classified 
the disease as one of the “holy diseases” and was the 
reason that the philosophy was involved in medicine. 
It was believed that from the ventricular system, in 
the center of the brain, the water was the filter for 
the refinement of the human soul. The first observa-
tions and descriptions of the occurrence of “brain 
water”, as well as the first therapeutic interventions 
to cope with excessive growth, are attributed to the 
ancient Greeks. Hippocrates (460-370 BC) is known 
as the first physician who described and tried to 
treat hydrocephalus (hydro = water, cephalus = skull). 
Hippocrates was the first to suggest catheteriza-
tions of the ventricular system [1]. Herophilos from 
Alexandreia (325-255 BC), often called the anatomy’s 
father, wrote about the ventricular system and about 
the fourth ventricle, the meninges, and tried to ex-
plain their function [2]. Galinos (128-200 BC) and 
Orivasios (325-405 BC) introduced thoughts about 
hydrocephalus [3]. Salomόn Hakim described in 1964 
normal pressure hydrocephalus (NPH) as a syndrome 
with normal cerebrospinal fluid pressure causing gait 
apraxia, cognitive impairment, and urinary inconti-
nence, responding to shunt [4]. 

Clinical approach

The most common symptoms in hydrocephalus are 
a symmetrical broad based, short-stepped gait, un-
explained impairment of balance, frontal-subcortical 
pattern of cognitive impairment and urinary urgency 
or urinary incontinence [5-7]. Gait test compatible 
to hydrocephalus disease appears with decreased 

step-height and length, decreased cadence, magnetic 
gait, increased trunk sway during walking, turned-
out toes on walking, widened standing base, turning 
bloc and retropulsion. Cognitive impairment and 
dementia is another common symptom with involve-
ment of the prefrontal brain areas causing execu-
tive dysfunction, slow psychomotor function with 
relatively intact recognition memory but with poor 
retrieval memory. Urinary urgency or incontinence is 
also common symptoms in iNPH but they are poorly 
described in the literature. A recently published study 
described bowel impairment in patients with hy-
drocephalus compared to healthy individuals [8]. A 
small study with hydrocephalus patients reported 
significant reduction of ganglion cell layer, suggest-
ing an ongoing neurodegenerative process due to 
altered cerebrospinal fluid (CSF) dynamics [9]. Other 
symptoms such as depression, apathy, agnosia, sei-
zures have been described in case control studies as 
uncommon symptoms of iNPH [10-12] [13, 14]. The 
prevalence of iNPH according to a Swedish study 
was estimated at 0.2% in individuals with an age of 
70-79 and rising to 5.9% for individuals with an age 
higher than 80 years [15]. So far, there seems to be 
no difference in gender distribution [16]. 

The Computer Tomography (CT) or the Magnetic 
Resonance Imaging (MRI) of the brain shows expand-
ed ventricular system, where other diseases cannot 
explain the patient’s symptoms.

Hydrocephalus (HC) is divided into communicating 
and non-communicating HC (figure 1a and figure 
1b). Communicating HC can be further divided, to 
secondary normal pressure hydrocephalus (sNPH), 
where the underlying cause is known, for example, 
following a subarachnoid hemorrhage and meningi-
tis, and idiopathic NPH (iNPH) where no underlying 
cause can be found (figures 2 and 3). Furthermore, 
in last years, there is increasing number of reports 
on familial iNPH which indicates a potential genetic 
component and leads to a wide recognition of a 
third form of NPH, familial NPH (fNPH). Unlike sNPH, 
iNPH is difficult to distinguish from other neurologi-

can improve patients’ symptoms as much as 84% raising the hypothesis of reversibility. Hence, iNPH is a 
big challenge for the neurologists because of the difficulties to diagnose patients suitable to shunt surgery 
and recently published studies focused to identify this control group. The other challenge is to understand 
the pathophysiological mechanism behind this disease. The guidelines of iNPH are changing and there is a 
continuous effort to differentiate iNPH patients from other neurodegenerative diseases. The lack of golden 
standard for diagnosis of iNPH makes the identification of iNPH patients challenging. The natural course 
of iNPH is a deterioration of symptomatology with worsening of gait, balance urinary disturbance and 
cognitive decline and patients with untreated condition can partially achieve the same results they would 
have experienced if they had undergone shunt surgery in good time. Therefore, the aim of this article is to 
shortly review the literature and come to a practical way of thinking.

Key words: hydrocephalus, pathophysiology, biomarkers, Radscale, CSF tap test
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cal states with the symptoms of motor, cognitive 
and urinary incontinence in the elderly. Patients with 
iNPH are classified as “probable”, “possible” and 
“unlike” [16].

Shunt is the only current treatment in iNPH estab-
lished since 1951 by Nulsen, Spitz and Holter [17]. 
The aim of the treatment is to reduce the amount 
of CSF in the ventricle system and thus normalize 
the volume in the ventricular system. The standard 
treatment is surgery with a shunt placed from the 
ventricular system in the brain to the cardiac atrium, 
to the chest cavity, bladder, and most placed in the 
abdomen in peritoneal space. There is no consensus 
regarding the indications for surgery, but there are 

guidelines, both International-European and Japanese 
[18-21]. Usually, those patients exhibit the above-
mentioned symptoms in combination with typical ra-

Figure 1. A: non communicating hydrocephalus; B: 
communicating hydrocephalus

Figure 2. On the left up side the normal ventricular 
system, on the right bottom secondary hydroceph-
alus caused by bilateral posterior infarcts

Figure 3. Typical picture of idiopathic normal pres-
sure hydrocephalus
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diological imaging are considered for surgery. Almost 
80% of iNPH patients improve their motor function 
but there are still a 20% of patients without any 
difference before and after a shunt operation [22]. 

However, the symptoms seen in NPH are common 
in elderly and may have many other causes. It can 
also be difficult to distinguish the radiological image 
from that seen in brain atrophy. Patients with Al-
zheimer’s disease (AD) or subcortical vascular disease 
may appear to have large ventricles on the Computer 
Tomography or MRI image because of cerebral atro-
phy. They may also have similar symptoms to normal 
pressure hydrocephalus that are related to different 
degrees of white matter ischemia [16]. 

PATHOPHYSIOLOGY 

In 50% of patients with NPH, no known cause 
can be identified. The underlying pathophysiology of 
iNPH remains unknown. The CSF space is a dynamic 
system, which constantly adapts its pressure to keep 
it stable. It responds to changes in CSF formation or 
reabsorption rates, arterial and venous flow, compli-
ance of the intracranial structures and fluctuations in 
intracranial pressure (ICP). This process is important to 
ensure the correct functioning of the brain. Indeed, 
the brain is enclosed in a fixed structure and any 
volume increase needs to be matched by a decrease 
to avoid changes of the intracranial pressure and con-
sequential functional abnormalities. The volume of 
blood entering the brain varies with the cardiac cycle, 
being present a net intracranial inflow of blood dur-
ing systole and a net outflow during diastole. Arterial 
supply to the brain is pulsatile, while venous flow 
does not. This mismatch generates transient rises in 
CSF pressure. The system compensates for this in two 
different ways. First, the blood vessels can smooth 
the arterial blood influx modulating their compliance. 
Second the CSF flows through the cerebral aqueduct 
in response to pulsatile blood flow, thus maintaining 
intracranial pressure stable. When these processes 
are altered, compensatory strategies are applied. 
However, the compensatory mechanisms that keep 
the CSF pressure constant may also produce other 
pathological alteration. In iNPH, the compliance of 
the system is reduced, especially in the vessel of the 
superior sagittal sinus. This lack of arterial compli-
ance is initially countered by increases pulsatile CSF 
flow through the aqueduct, but as the amplitude of 
arterial pulsatility increases, the blood flow in systole 
induces large ICP pulsations, determining the “water 
hammer” effect. These exaggerated pulsations cause 
venous damage in the periventricular region and 
displace the brain toward the skull, thus determining 
the development of hydrocephalus [23-25]. 

A lot of other hypotheses suggest structural or 
tissue distortion, reserve of CSF and interstitial fluid 

flow, failure of drainage of vasoactive metabolites, 
watershed ischemia in the deep white matter, im-
pairment of periventricular cerebral blood flow 
autoregulation and dysfunction of CSF circulation 
or hydrodynamics. Abnormalities of CSF secretion, 
circulation and absorption can lead to excessive ac-
cumulation of CSF in the ventricular system and the 
development of hydrocephalus. Disturbances of CSF 
absorption play an important role in the development 
of hydrocephalus. It is of interest that review of the 
literature reveals a very high incidence of hypertensive 
and/or arteriosclerotic cerebrovascular disease in pa-
tients with idiopathic normal pressure hydrocephalus. 
The few published autopsy and biopsy studies of 
iNPH or NPH patients have not revealed any specific 
neuropathological pattern for NPH. 

Cerebrovascular and neurodegenerative, includ-
ing Alzheimer’s changes, are present in many NPH 
patients. Leptomeningeal fibrosis has been found 
but does not correlate to CSF outflow [26-28]. In 
the iNPH-CrasH study presented that hyperlipidemia, 
diabetes mellitus, hypertension, mental inactivity, 
cerebrovascular disorders such as peripheral vascu-
lar diseases, obesity and psychosocial factors were 
over-represented in iNPH patients [29]. Tullberg et al 
in two previous studies found increased neurophila-
ment (NFL) and glial fibrillary acidic protein (GFAP) 
in NPH patients but no correlation of interest was 
found between GFAP and NFL and NPH symptoms 
[30],[31]. In a third study of the same institute the 
preoperative NFL levels in NPH group correlated with 
overall improvement in gait and balance [32]. In a 
fourth study including NPH patients found elevated 
NFL levels preoperatively and a trend level with lower 
levels of NFL in patients with longer disease dura-
tion. Higher NFL levels correlated significantly with 
worse gait, psychometric and overall performance 
[33]. Tullberg et al in a study with 18 iNPH patients 
higher NFL was correlated with significantly poorer 
preoperative performance [34]. Tarkowski et al found 
high preoperative NFL levels in NPH patients [35]. 
Leinonen et al in a study with 35 suspected iNPH 
patients looked at the CSF biomarkers in positive and 
negative external lumbar drainage patients and found 
that NFL was pathologically increased similarly in both 
groups. Mean β-amyloid did not differ significantly 
between the groups. T-tau increased significantly 
with the age [36]. Jeppsson et al in a study with iNPH 
patients found elevated NFL and lower tau levels in 
patients with iNPH than in healthy individuals. Post-
operatively, NFL increased, and t-tau decreased [37]. 
Pyykkö et al in a study with 53 iNPH patients found 
that iNPH patients with positive shunt response had a 
tendency towards lower NFL levels in ventricular CSF 
compared to shunt non-responders iNPH patients. 
Their interpretation of their result was that as NFL 
reflects subcortical axonal damage. Perhaps high NFL 
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could represent more severe and less recovery injury 
in the hydrocephalic brain [38]. Jeppsson et al in a 
study with 20 iNPH patients and 20 neurologically 
healthy controls found no difference of significance 
in NFL [39]. Abu-Rumeileh et al in a study with 71 
iNPH and 50 healthy individuals showed significantly 
lower levels of aβ42, aβ40, t-tau, p-tau compared to 
healthy individuals. NFL levels were increased in iNPH 
[40]. Jeppsson et al in a study with 82 iNPH patients 
and other neurodegenerative conditions reported 
lower p-tau concentration in the iNPH groups com-
pared with non-iNPH group and healthy individuals 
[41]. Manniche et al in a study with 28 iNPH patients, 
30 subcortical ischemic vascular disease, 57 AD and 
33 healthy controllers found lower NFL, aβ42 and 
t-tau levels in iNPH patients. NFL and aβ42 were the 
most reliable biomarkers to differentiate iNPH from 
subcortical ischemic vascular disease [42].

Currently, the genetic and molecular pathogen-
esis of iNPH is undetermined. One study showed a 
large family with three-generation NPH patients, who 
had clinical and MRI findings that cannot differ from 
iNPH . In a study by Korhonen et al. the prevalence 
of the C9ORF72 expansion in Finnish iNPH patients 
reported higher than expected giving the suspicion 
of connection between frontotemporal dementia and 
iNPH. Eleftheriou et al described identical twins with 
iNPH but not further genetic analysis was performed 
[14, 43-45]. 

The most common neuropathologies in patients 
with iNPH are vascular and Alzheimer’s disease (AD)-
related changes [46]. Amyloid plaque has been re-
ported in brain biopsies from patients with iNPH and 
proposed as a significant feature of the pathology. 
In iNPH patients the rate of amyloid deposition is 
higher than in cognitively normal elderly subjects, 
but no differences in the probability of the apoE4 
carriers observed [47]. Presence of apolipoprotein E4 
(APOE4) allele is associated with increased risk of AD. 
The APOE distribution did not differ significantly be-
tween the iNPH patients and control population [48]. 

Besides small vascular disease Alzheimer’s disease 
(AD) coexists frequently [49]. Frontotemporal de-
mentia (FTD) has been also listed as a comorbidity 
in iNPH [44, 50].

CSF REMOVAL – CSF TAP TEST

The CSF tap test (CSF TT) is an invasive test that 
helps to diagnose possible disturbance in cerebrospinal 
fluid dynamics. The test starts with the patient in re-
cumbent position. The doctor performs a lumbar punc-
tion and once CSF is obtained, a spinal manometer 
connects to measure the CSF pressure in cm H20. For 
iNPH diagnosis the CSF opening pressure is expected 
to be 5-18 mm Hg (70-245 mmH20).The pressure is 
measured during a period of about one minute to 

avoid any artificially elevated levels, the patients have 
to be relaxed and their neck has a neutral position, 
the legs are extended. For the CSF TT 35-50 ml CSF is 
removed and the patients symptoms (especially gait 
and balance) are assessed before and after the CSF 
TT [51]. According to a review of eight CSF studies 
73-100% experienced a good positive predictive value 
[52]. The negative predictive value of CSF TT was 18%-
50%, meaning that patients with a positive CSF TT 
have a good prognosis to respond to a shunt surgery 
but a negative result from a CSF TT cannot rule out 
patients from surgery [53]. Extended 3 days CSF TT 
with the use of lumbar drainage have been used in 
previous studies but even with this test, a negative 
result could not rule out the possibility of response of 
a shunt surgery showing a positive predictive value of 
80%-100% and a negative predictive value of 36%-
100% [54] [55] [56]. Recently published study showed 
clear limitations of the CSF TT for selection of shunt 
eligible patients [57].

RADIOLOGICAL FEATURES

The presence of ventriculomegaly itself is not suf-
ficient to diagnose iNPH. It is a common finding in 
elderly people due to the brain atrophy and is even 
more often seen in patients with AD. The perihip-
pocampal fissure is dilated in AD, but not in iNPH. 

Malm et al. and Momjian et al. considered that 
there may be a subcortical ischemia caused by CSF 
in combination with cerebrovascular disease [25, 
58]. Flow MRI studies in patients with iNPH showed 
that the arterial pulse volume is reduced by 35%, 
and that the aqueduct stroke volume is elevated 
compared to normal, but similar results were also 
found in patients with dementia [23]. By introducing 
a shunt, the dysfunctional CSF system normalizes. 

The combination of radiological findings and 
clinical features supports the identification of iNPH 
patients. However, the diagnosis of iNPH is challeng-
ing due to other neurodegenerative diseases with 
similar clinical symptoms and radiological picture 
[25]. Clinical experience presents that not all the 
ventriculomegaly patients, who meet all the criteria 
for iNPH, improve after a surgical intervention [24]. 
Alzheimer’s disease (AD), vascular Dementia (vD), 
Parkinson’s Disease, periventricular microangiopaty 
and other white matter diseases represent this group. 
The pathophysiology of white matter involvement is 
still poorly understood.

To understand how symptoms are improved in 
relation to the pathophysiology of iNPH, it is neces-
sary to use techniques that can explore all lesions in 
the functional and anatomical structures involved in 
the disease. CSF withdrawal tests, intracranial pres-
sure recording, or resistance measurement has been 
evaluated. Minor invasive techniques have also been 
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investigated, including CSF flow measurement with 
MR-velocity-sensitive pulse sequences or proton mag-
netic resonance spectroscopy (H-MRS) and in recent 
years also diffusion tensor imaging (DTI). 

The periventricular tissue is characterized by disrup-
tion of the ependyma, oedema, neuronal degenera-
tion, and gliosis, probably because of the altered 
dynamics in the extracellular fluid. These periven-
tricular changes are referred to as smooth periven-
tricular hyperintensity at the MRI. Microangiopathy 
changes near the ventricle system can present in 
both iNPH patients and vascular patients such as 
Binswanger Disease patients. Because of that, in the 
last years there is an increasing interest in white mat-
ter changes in iNPH patients. Using DTI is the most 
recognized method to examine white matter pathol-
ogy [59]. The diffusion tensor was originally proposed 
for use in MRI by Peter Basser in 1994 [60, 61]. The 
introduction of the diffusion tensor model allowed, 
for the first time, a rotationally invariant description 
of the shape of water diffusion. The combination of 
2D diffusion-weighted images, including diagonal 
elements, to a 3D diffusion assessment creates a 
high-resolution MR technique, which can reveal in-
tegrity periventricular white matter changes [62]. DTI 
describes the diffusion of water molecules using a 
Gaussian model. Technically, it is proportional to the 
covariance matrix of a three-dimensional Gaussian 
distribution that models the displacements of the 
molecules. By using this technique, we achieve to 
measure three eigenvectors and three eigenvalues. 
The three positive eigenvalues of the tensor (ε1, ε2, 
ε3) give the diffusivity in the direction of each eigen-
vector [63]. DTI integrity changes are quantified by 
apparent diffusion coefficient (ADC), which shows 
the diffusion changes and fractional anisotropy (FA), 
which presenting ADCs directivity [64]. Increased FA 
indicates compression of white matter and decreased 
FA is pointed out with axonal degeneration or brain 
oedema or both [65] [66, 67]. DTI is a non-invasive 
diagnostic promising tool which has been used in 
patients with iNPH. DTI has an huge ability to explore 
and visualize white matter and has been used as a 
possible diagnostic utility in patients with multiple 
sclerosis for quantification of brain white and grey 
matter damage in different MS phenotypes [68, 69], 
epilepsy for visualization of cyto-architecture distor-
tion by appealing increased diffusivity and decreased 
AF [70].Trying to approach a possible explanation of 
iNPH’s onset and to differential diagnose from other 
entities in early disease stage is challenging. DTI has 
been used in several research groups. 

Radiological studies with the use of cerebral blood 
flow (CBF) revealed a reduced perfusion in the peri-
ventricular white matter compared to the perfusion 
of the subcortical white matter in iNPH patients 
[58, 71-73]. In studies focused on neuropathologi-

cal findings, micro infarctions, lacunar infarction, 
microangiopathy and axonal loss to the frontal area 
has been described [26]. Other studies referred to the 
existence of AD-related CSF biomarkers in patients 
with iNPH and observed non-neuroinflammation in 
both diseases [27, 28, 38, 74]. 

During the last years, there is a continuous effort 
for more specific quantification of brain microstruc-
ture, by using diffusion MRI, and develop white mat-
ter models consisting of several compartments such 
as orientation, volume, fraction and diffusivity [75]. 
For example, the Composite Hindered and Restricted 
Water Diffusion (CHARMED) model provided sensible 
maps of axon density in vivo [76]. Measurements 
and simulations of diffusion in white matter using 
CHARMED provided an unbiased estimate of fiber 
orientation with consistently smaller angular uncer-
tainty than when calculated using a DTI model or 
with a dual tensor model for any given signal-to-noise 
level. Furthermore, another paper introduced neurite 
orientation dispersion and density imaging (NODDI), 
a practical diffusion MRI technique for estimating the 
microstructural complexity of dendrites and axons 
in vivo on clinical MRI scanners [77]. Such indices of 
neurites can be used to map over the whole brain 
and presents new opportunities for understanding 
brain development and disorders.

Smith et al. introduced 2006 a new technology 
called Tract-Based Spatial Statistics (TBSS) [71]. TBSS 
aims to improve the sensitivity, objectivity, and in-
terpretation of multidisciplinary diffusion formation 
studies. The purpose of TBSS was also to examine 
the whole brain and not just specific sites with single 
manual coated ROIs. This was like a calculated group 
mean FA-skeleton which improves a general model 
that can be automatically performed on all individu-
als who investigated by DTI. Liu et.al and Kern et al. 
performed TBSS in patients with MS, Knake et a. 
in PSP patients, Domin et al. in juvenile myoclonic 
epilepsy, Alves et al. in Alzheimer’s patients, Liu et 
al. in temporal lobe epilepsy patients and in chronic 
schizophrenia patients. The method is not widely in-
troduced in iNPH patients, but gives the opportunity 
to understand white matter changes in ventriculo-
megaly patients [78-85].

Bielke et al. 1984 and Basser et al. 1985 introduced 
Synthetic Magnetic Resonance imaging (S-MRI), a 
quantitative imaging technique that measures inher-
ent T1-relaxation, T2-relaxation, and proton density 
[86]. These inherent tissue properties allow synthesis 
of various imaging sequences from a single acquisi-
tion. Synthetic MR is a method which with a simple 
way calculates the volume of CSF located outside 
the ventricles in basal cisterns and brain cells. Vir-
hammar et al. published 2018 research in which by 
using S-MRI they achieved to measure the ventricle 
volume changes after a shunt operation. Postopera-
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tive decrease in ventricle size is otherwise usually not 
detectable either by visual assessment or by measur-
ing Evan’s index in patients with iNPH [87]. 

RADSCALE

The most important part in diagnosis of iNPH is 
neuroimaging with the use of brain CT or MRI. 

Common radiological criterion for iNPH is Evans 
ratio, which provides certain guidance, but is of lim-
ited value in differentiating iNPH from AD. The Evans 
ratio is the ratio of the maximum width of the frontal 
horns of the lateral ventricles and maximal internal 
diameter of the skull at the same level employed in 
axial CT or MRI images. This ratio varies with age and 
sex. An Evans index >0.3 is considered consistent 
with increased ventricular size [88] (figure 4).

Tight high-convexity and medial subarachnoid 
spaces and enlarged sylvian fissure associated with 
ventriculomegaly, defined as disproportionately en-
larged subarachnoid-space hydrocephalus (DESH) 
seem to be relatively good predictors of shunt surgery 
effect in iNPH. Focally enlarged sulci are seen in 25% 
of patients [89, 90] [91] [92] (figures 5 and 6).

The corpus callosum angle has been proposed as 
a useful marker of patients with iNPH, helpful in 
distinguishing these patients from those with ex-
vacuo ventriculomegaly. The most used cut-off is 
<90 degrees [93] [94] (figures 7 and 8).

Another radiological marker is the widening of 
the temporal horns not due to hippocampal atrophy 
[95] (figure 9).

All above radiological markers in combination with 

periventricular hypodensities (figure 10) are described 
in the Radscale (table 1). A patient with maximux 
score of 12 points gives clear importance for further 
investigation regarding the importance of a shunt 
operation. 

A Radscale score≥8 points (maximum 12 points) 
suggest high probability of iNPH existence if typical 
symptoms are present [96].

Figure 4. An Evans index >0.3 is considered con-
sistent with increased ventricular size

Figures 5 and 6. Tight high-convexity and me-
dial subarachnoid spaces and enlarged sylvian fis-
sure associated with ventriculomegaly, defined as 
disproportionately enlarged subarachnoid-space 
hydrocephalus (DESH) seem to be relatively good 
predictors of shunt surgery effect in iNPH
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Conclusion

INPH is a disease affecting elderly population, is 
difficult to differentiate from other common neurode-
generative diseases. A compilation of detailed medi-
cal history, meticulous clinical investigation, control 
of CSF biomarkers and dynamics, physiotherapist 
and occupational therapist evaluations and rigorous 
neuroradiological assessment could lead to identify 
the shunt-eligible iNPH patients easier. 
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Figures 7 and 8. The corpus callosum angle has 
been proposed as a useful marker of patients with 
iNPH, helpful in distinguishing these patients from 
those with ex-vacuo ventriculomegaly. The most 
used cut-off is <90 degrees

Figure 9. The widening of the temporal horns not 
due to hippocampal atrophy is another radiological 
marker for iNPH

Figure 10. Periventricular hypodensities are usual 
radiological finding in patients with iNPH
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