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Dear colleagues and partners 

Dear Readers

On the occasion of the symbolic anniversary of the two hundred years since the Revolution 
of 1821, the Hellenic Neurological Society (ENE) organized an online scientific event entitled 
"1821-2021: 200 years of the Greek World and Neurosciences", 14-16 May 2021. 

With full awareness of the historically established ecumenical character of the Greek civiliza-
tion and its contribution to the formation of the modern world, this event was dedicated 
to scientists of Greek descent who serve Neurosciences abroad as members of the so-called 
"Greek Diaspora". Modern Greek history is intertwined with the phenomenon of the Diaspora. 

Greeks, like any other people, especially those who have experienced persecution, genocide, 
and struggles for freedom and self-determination, can not avoid spontaneous feelings of 
pride and hope with every case of prosperity and progress somewhere in the world with even 
a least referal to Greek identity or origin. 

However, apart from the inevitable emotions due to our identity as a nation and regardless 
of the degree to which ties of cooperation between Metropolitan Greece and the Hellenism 
of the Diaspora were cultivated, science, as an important component of culture, is a field 
of creative relationship and mutually beneficial path. Beyond updating on scientific devel-
opments, the online event on 14-16 May 2021, was considered a clear message of such 
a vision in Neurology and Neuroscience in Greece, in a highly competitive and demanding 
global environment. 

In the current issue of “Archives of Clinical Neurology”, eight out of a total of twenty topics 
presented in this scientific event such as stroke, neuroimaging, neurogenetics and neuroim-
munology, are published. We are grateful to all our invited speakers and among them, those 
who responded to the invitation of the journal’s editorial board to submit their relevant 
manuscripts for publication, thus enabling us to recall some of the highlights in various areas 
of Neurology and Neuroscience presented in the meeting. 

On behalf of the Organizing Committee

Nikolaos Grigoriadis, MD, PhD
Professor of Neurology

President of the "1821-2021: 200 years of the 
Greek World and Neurosciences", 14-16 May 2021

ε σΕ κ δ ο τ ι κ ό   Σ η μ ε ί ω μ α
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Ά ρ θ ρ α . . .

δραστηριότητες

βιβλία
συνέδρια

ημερίδες
νέανευρολογικά δενημέρωση

«Η δημοσίευση άρθρων στο περιοδικό “ΑΡΧΕΙΑ ΚΛΙΝΙΚΗΣ ΝΕΥΡΟΛΟΓΙΑΣ” δεν δηλώνει αποδοχή
των απόψεων και θέσεων του συγγραφέα από την Συντακτική Επιτροπή ή την ΕΝΕ»

«Το περιεχόμενο των καταχωρήσεων είναι ευθύνη των εταιρειών που αναφέρονται
και οφείλει να ακολουθεί τις προβλεπόμενες νόμιμες προϋποθέσεις»

«H χρήση εργαλείων, κλιμάκων και λογισμικού που αναφέρεται στις εργασίες είναι ευθύνη
των συγγραφέων, οι οποίοι πρέπει να έχουν εξασφαλίσει τις σχετικές άδειες

και να τις κρατούν στο προσωπικό τους αρχείο»
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The term “Neurology” was first introduced by 
Thomas Willis in his landmark book Cerebri Anatome 
in 1664. In this book, written in Latin, “Neurologie” 
is referred to as “the Doctrine of Nerves” (cranial, 
spinal, peripheral). It did not originally include the 
brain and spinal cord, but later towards the end of 
the 18th century it acquired a broader meaning as 
this in the Oxford English Dictionary (“neurology: 
the scientific study or knowledge of the anatomy, 
functions and diseases of the nerves and the nervous 
system”) [1].

Neurology as a medical specialty has passed 
through 3 major phases: the initial phase, where 
the phenomenology of the living patient was linked 
to the anatomical substrate, usually postmortem. This 
phase was started with Jean-Martin Charcot in mid-
end of the 19th century, overlapped significantly with 
Psychiatry and continued until the second phase in 
1971, when for the first time the anatomical details 
of the brain were visualized in vivo on computed 
tomography (and few years later, in 1977 on the 
magnetic resonance imaging). The third phase is in 
the current times, where through the advent of com-
puterized data collection and analysis, we are able 
to decipher genetic diseases, view connectomes and 
develop brain-computer interphases (BCI). 

The economic burden of neurological diseases 
is tremendous and has been estimated in 2017 to 
exceed $800 billion/year in the United States of 
America, with headache having the highest inci-
dence and prevalence in that population [2]. This 
high demand for neurological services is balanced by 
shortage of neurologists across the Globe. Neurol-
ogy faces the same challenges that other medical 
specialties face, which results from uncertainties in 
Health Care: limited access, safety, quality, and af-
fordability. Fragmented care, lack of communication, 
difficult access to Neurologists, over-specialization 
and lack of generalists, inundation by non-Neuro-
logical patients, inability to satisfy the demand for 
neurological expertise (and thus “giving away” sec-
tions of Neurology), lack of patient education and 
participation in care, a need for a different, remote 
tele-neurological examination during the pandemic 
are few of the additional challenges that we face. 

Like in other specialties, neurologists and, especially, 
academic neurologists, must face these challenges 
and develop solutions to deliver services with value to 
their patients. I would argue that in the near future 
Academic Neurological Departments have to move 
simultaneously along 5 axes:

1. Patient Care: bring value to patients without burn-
out to neurologists.

2. Financial Stability: maximize the net revenue.
3. Retention, Growth and Diversity: aim at the best 

and for all subspecialties.
4. Education of the Next Generation: transmit the 

knowledge and bridge the gap.
5. Research: shape the future on a macroscale.

Patient Care: It is debatable how an academic 
Department can bring value to patients without 
burnout to neurologists, since in the USA alone 
in 2012 there was a 11% shortfall between sup-
ply and demand for neurologists (and this was 
expected to increase to 19% in 2025) [3] and at 
the same time Neurologists, along with emergency 
medicine and internal medicine physicians, had a 
3-fold increased odds of burnout compared to other 
specialties. Moreover, 60% of neurologists report 
symptoms of burnout [4,5]. One solution would 
be to separate the 3 types of academic neurolo-
gists, clinician-educator, physician-scientist and the 
“triple threat” (clinician, researcher and educator) 
[6] into different locations, with different budgets 
and separate staff or develop service lines that reach 
beyond the traditional departments and encompass 
Neurologic, Neurosurgical, Imaging as a continuum, 
under a single umbrella [7].

Financial stability: academic Departments are not 
isolated from the financial pressures that modern 
Medicine is experiencing. Two surveys, in 2002 and 
2019, by the Association of University Professors of 
Neurology and the American Neurologic Association 
showed that academic Neurology Departments spend 
more effort on clinical revenue-generating activities 
in 2019 compared with 2002 [8]. Increasing access 
to outpatient services via telemedicine and decreas-
ing unnecessary demand by identifying and educat-
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ing referring physicians may be tangible solutions to 
generate more revenue for the Departments.

Retention, Growth and Diversity: attrition is a seri-
ous problem that academic institutions face. Up to 
21% of academic faculty were considering leaving 
Medicine because of dissatisfaction in a large survey 
of USA medical schools [9]. Retention and growth are 
therefore imperatives, and a stable financial state of 
any Department is a healthy springboard to achieve 
that. Diversity and equal payment are other prob-
lems: only 39% of all 2018 American Academy of 
Neurology members are women [10], only 12% of 
Neurology Department Chairs are held by women 
and there is a $37,000 gap in academic Neurology 
yearly compensation between men and women, the 
highest relative gap amongst all specialties [11].

Education of the Next Generation: there is a trend 
towards training residents into two separate paths, 
one hospital-based and another outpatient-based 
[7]. This may be due to different characteristics on 
sub-specialization the trainees seek, with neuroin-
tensivists and movement disorders specialists at the 
two extremes of the spectrum. By the same token, 
residents are paying less time educating themselves 
in the traditional (and to the very neurological core!) 
localization paradigms and more on reading images 
and mastering the electronic medical records, with 
fewer overall hours residing in the hospital. How this 
will differentiate them in the future from other health 
care providers (nurse practitioners and physician as-
sistants, for example), who are cheaper compared to 
an academic neurologist and could equally provide 
tele-health services, has to be seen.

Research: although the highest percentage of re-
search funding is still via federal entities in the USA 
(National Institute of Health) or pharmaceutical com-
panies, the highest increase in compound annual re-
search growth rate is not for those (in fact they show 
negative growth rates), but for medical devices and 
biotechnology firms [12]. How academic Neurology 
Departments will adjust to this type of non-bench 
basic research and funding is unclear, especially since 
there has been a plateau or decline in neuroscience 
research translation from bench to the patient [13]. 
Genetics of neurological diseases, advance neuroim-
aging with connectomics and networks and BCI [14, 
15] seem to be the most promising fields for future 
academic research.

In conclusion, academic Neurology will be the core 
of Neurology in the near future but needs to adjust 
to the demands of our times. Its pillars, which will 
allow it to survive and thrive, will be the same: it 
needs to continue providing patient care with value, 
balance the budget, become more inclusive and di-
verse, train the new generation of Asclepiadae and 
shape the near and remote future by conducting 
research. It is likely that the gap between clinicians 

and researchers in academic Neurology will widen. 
The same will be true between trainees or practitio-
ners in the inpatient and outpatient-care settings. 
Additional sub-sub-specializations will emerge from 
the Neurological Academia and spread to the rest 
of Neurology. Therefore, drastic changes in the or-
ganization and function of academic Departments 
will be required to address the internal challenges 
and external pressures.
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Summary

Multiple sclerosis (MS) is an autoimmune-mediated inflammatory demyelinating and degenerative dis-
ease occurring in the central nervous system (CNS). There are no current therapeutics available to treat 
patients with progressive MS. Hence, mechanisms that govern CNS neuroprotection and repair need to 
be elucidated to provide novel targeted therapeutics to reverse permanent CNS damage. Our laboratory 
designed a novel method of delivering the NgR (310) ecto-myc-Fc fusion protein by incorporating the DNA 
construct into a lentiviral vector and transducing donor hematopoietic stem cells (HSCs) ex vivo, followed 
by their transplantation in recipient mice to target inflammatory demyelinating lesions that ensue during 
the MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this 
study was to investigate the potential therapeutic effects of lesion-specific delivery of the NgR (310) ecto-
Fc protein, following the lineage differentiation of the transplanted HSCs, demonstrating neuroprotection 
and neurorepair during the course of EAE.

Key words: Nogo A, experimental autoimmune encephalomyelitis, Nogo Receptor, NgR-Fc,  
haematopoietic stem cells, remyelination, neurorepair, multiple sclerosis
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Introduction

Multiple Sclerosis (MS) is an autoimmune disease 
with neurodegeneration characterized by inflamma-
tion and demyelination within the central nervous 
system (CNS). It impacts an individual’s quality of life 
substantially and places a heavy burden on the public 
health system, with women more commonly diag-
nosed at the prime of their lives with onset of symp-
toms occurring between the ages of 20-40-year-olds 
[1]. The cause remains elusive, however, the presence 
of a heterogeneous array of symptoms involving mo-
tor, sensory, visual and autonomic systems contribute 
to it being the most common cause of non-traumatic 
neurological disability in young adults [2]. The unique 
symptoms arise from the development of multiple 
lesions across the CNS; thus, no individual may ex-
perience the exact symptoms at a specific stage of 
the disease course. The major effectors in the patho-
genesis and sequelae of MS are infiltrating activated 
macrophages and endogenous microglia [3]. Due to 
the leaky blood-brain barrier (BBB) during active MS, 
monocytic-derived macrophages from the periphery 
may infiltrate the CNS and along with endogenous 
microglia, transition into a proinflammatory pheno-
type, actively contributing to the proinflammatory 

propagation of demyelination and eventually axonal 
damage [4]. Moreover, the activation of astrocytes 
and eventual dropout of mature oligodendrocytes, 
along with the pathological modifications of the cel-
lular milieu all play a part in the expansion of lesion 
burden, promulgating neurodegenerative change 
over time [5, 6]. 

The heterogeneity of the disease poses a chal-
lenge for designing effective therapeutics that target 
multiple cellular and extracellular reactive changes 
within the brains of individuals living with MS, es-
pecially when the disease progresses. Currently, the 
treatments available are either immunomodulatory 
or immunosuppressive, limited to reducing the re-
lapse rate for patients only. As the disease progresses, 
there exists no effective treatment to halt the pro-
gression towards neurodegeneration and elicit neu-
rorepair. Limitations for effective neurorepair, have 
been suggested partially due to inhibitory factors in 
the MS lesion milieu exerted through the deposition 
of substantive myelin-associated inhibitory factors 
(MAIFs), with the most potent being the integral 
myelin protein, Nogo-A [7, 8]. Nogo-A, a neurite 
outgrowth inhibitor, is localized on the surface of 
oligodendrocytes and myelin sheaths [9]. It exerts 
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this effect by binding with high affinity to Nogo-66 
receptor 1 (NgR1), which can also bind other MAIFs 
such as myelin-associated glycoprotein (MAG) and 
oligodendrocyte myelin glycoprotein (OMgp) [9]. 
The expression of Nogo-A and NgR1 has been found 
upregulated in many CNS disorders, that can include 
MS, spinal cord injury (SCI) and brain injury, stroke, 
glaucoma to name a few [10]. It has been established 
that absence or blockage of Nogo-A may limit and 
protect the progression of the animal model of MS, 
namely experimental autoimmune encephalomyelitis 
(EAE) [11, 12]. Furthermore, there are suggestions 
that Nogo-A inhibition may shift activated macro-
phage and microglia from pro-inflammatory to anti-
inflammatory phenotypes, promoting repair [12]. 
Thus, limiting the effects of Nogo-A may be a poten-
tial target to overcome the barriers to neurorepair. 
Designing an effective therapy that can target Nogo-
A must also take into consideration that it must be 
able to traverse the BBB, allowing access to lesion 
sites within the CNS. Hence, investigations utilizing 
novel means of delivering antagonizing biologics 
such as the NgR1-Fc fusion protein may well prove 
to be an excellent neuroprotective or even reparative 
measure. The use of a NgR1-Fc fusion protein has 
had promising results in preclinical studies in spinal 
cord injury (SCI) and stroke, however, clinically ef-
fective measures of delivery across the BBB still pose 
a major challenge [13]. The possibility of targeting 
Nogo-A and its cognate receptor, NgR1, as a poten-
tial therapeutic along with hematopoietic stem cell 
(HSC)-based delivery methods to overcome these 
limitations has been investigated in our laboratory.

Blocking NgR1 signalling and how novel  
is the treatment?

There are several methods that can be used to block 
NgR1 signalling, such as humanised antibodies, fusion 
proteins, peptides, and pharmacological blockers [14]. 
Blocking of the signalling pathways can be done by 
blocking either the receptor (NgR1) or blocking the 
ligand (MAIFs). An example of blocking the receptor is 
the conditional deletion of NgR1 (ngr1-/-) via the cre-lox 
system in EAE mice reduced axonal damage in the op-
tic nerves of mice even in the presence of neuroinflam-
matory lesions [8]. In the non-human primate model 
of spinal cord injury (SCI), administration of NgR1-Fc 
increased the axon density compared to the control 
group [15]. On the other hand, an example of blocking 
the ligand is through therapeutic antibodies directed 
against Nogo-A in EAE rats to promote recovery and 
remyelination [16]. Recently the humanised anti-Nogo-
A-antibody ATI355 entered a phase I clinical trial to 
treat SCI [17]. In a study conducted by Tsai et al., giving 
adult rats with stroke anti-Nogo-A-antibody (11C7) 
ameliorates the impairment of the forelimbs [18]. In 

the study of optic nerve lesion, knocking down NgR1 
or neutralising NogoA leads to more regeneration of 
the nerve but the growth rarely exceed 2 mm [19]. 

NgR (310) ecto-Fc fusion protein

In order to facilitate myelin debris uptake and pro-
mote remyelination, NgR (310) ecto-Fc fusion protein 
is constructed. The fusion protein consists of the sol-
uble portion of NgR1 containing the ligand-binding 
domain, which binds to MAIF to limit the inhibition 
of axonal neurite outgrowth [20]. Combining this 
soluble portion with Fc region of immunoglobulin G 
(IgG) enhances the binding to activated monocytes, 
increasing the myelin debris clearance [21]. 

Delivering NgR (310) ecto-Fc fusion protein 
using HSCs

The delivery of fusion protein to the CNS is often 
hindered by the presence of a blood-brain barrier [22] 
but immune cells such as T cells and macrophages 
can pass through the BBB [23]. HSCs, as mentioned 
before, are capable of differentiating into these im-
mune cells. HSCs can also be used as vehicles for 
drug delivery [24] and they can be modified using a 
lentiviral vector to express the gene of interest [25-
27]. Consequently, HSCs can be used to deliver the 
NgR(310)ecto-Fc fusion protein to the lesion sites, 
which will promote the myelin debris clearance by 
macrophage [20].

Conclusion

The hallmarks of multiple sclerosis are inflamma-
tion in the central nervous system and demyelin-
ation of neurons, leading to axonal injury as well as 
neurological decline. The cause of this disease is still 
yet to be determined but peripheral immune cells 
and glial cells have been shown to contribute to 
the pathophysiological aspect of multiple sclerosis. 
Currently, there is no curative treatment for clinically 
diagnosed patients and the available therapies have 
little to no efficacy on patients with the progressive 
forms of the disease. Since haematopoietic stem cells 
are able to traverse the BBB and NgR (310) ecto-Fc 
fusion protein has been shown to increase the myelin 
debris clearance and remyelination, combining both 
therapies might provide a better therapeutic avenue 
for MS patients. 
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Summary

A set of emerging optical imaging technologies exemplified by mesoscopic two-photon imaging with 
genetically targeted calcium indicators and a new generation of voltage sensitive dyes, allow us to record 
the activity in epileptic circuits of awake behaving animals with cell specificity at high spatio-temporal 
resolution, complementing classical electrophysiological approaches. These methods, in combination with 
transcriptomic profiling via high-throughput multiplexed error-robust fluorescence in situ hybridization 
(MERFISH) microscopy and with optogenetic-chemogenetic strategies for testing causality, hold great 
promise for dissecting the circuit mechanisms of epilepsy.

Key words: Optical methods, Circuit mechanisms of epilepsy, 2-photon imaging, transcriptomic analysis, MERFISH

Optical imaging methods have come of age in 
neuroscience, allowing chronic in vivo monitoring 
and manipulation of large networks of identified 
neurons with unprecedented yield and cell specificity. 
These tools are ideally suited for the study of circuit 
mechanisms of epilepsy. Understanding how neurons 
of identified type and circuit location get engaged 
into abnormal epileptiform patterns of activity re-
quires the 1) study of neuronal networks across time 
with cell specificity and high spatio-temporal resolu-
tion, the 2) causal manipulation of circuit elements 
of interest, and the 3) cell-specific interrogation of 
molecular mechanisms. Below we focus on items 1 
and 3, briefly summarizing recent work that promises 
to usher a new era in investigating the mechanisms 
underlying epileptic disorders. 

The new generation of extracellular multi-electrode 
probes and arrays allow the monitoring of hundreds 
to thousands of neurons (new silicon probes [1]) or 
large cortical regions (MEAs) with high temporal reso-
lution, and have successfully been used to gather 
valuable information about epileptic mechanisms in 
humans [2] and animals [1]. Silicon probes are how-
ever invasive and suffer from a selection bias, inability 
to accurately identify specific cell types, and poor 
capacity for monitoring stably the same units over 
time and for determining their precise localization 
and connectivity across the cortical circuit. Imaging 
methods can overcome these problems, albeit at 
the cost of relatively poor temporal resolution and 
limited access to deep brain regions. However, these 
problems have been recently mitigated with the ad-
vent of a new generation of in vivo voltage sensitive 

dyes whose temporal resolution is measured in mil-
liseconds [3-5] and specialized miniscope microscopy 
methods capable of accessing deep nuclei for optical 
imaging [6, 7].

Wide-field epifluorescence microscopy with spatial 
resolution in the tens of micrometers and kHz frame 
rate has been available since the early 90’s [8] and 
continues to yield important information. Rossi et 
al. recently used this method to argue that acute 
epileptiform activity induced by chemo-convulsant 
injection travels along homotypic connections to 
spread across cortical sensory areas extending sev-
eral millimeters [9]. However this method lacks the 
spatial resolution needed to resolve activity arising 
in individual cells. In the last 2 decades, two-photon 
(2P) laser scanning microscopy [10] is being increas-
ingly applied to study initiation and propagation of 
epileptiform activity as it affords single cell resolution 
at the sub-micrometer scale and can be combined 
with genetic labeling techniques to image specific 
cell types. For example, 2P imaging has been used 
to study genetic syndromes of epilepsy such as the 
mouse models of Stargazer [11] and Dravet [12], 
showing that desynchronization of neuronal firing 
is a feature of certain epileptic syndromes (see also 
[7]). Direct visualization of acute focal cortical sei-
zure events induced by chemo-convulsant injections 
with 2P imaging, revealed that seizure events start 
as local neuronal ensemble hyper-synchronization 
that spreads in a saltatory fashion to nearby territo-
ries [13-15]. Individual excitatory neurons appear to 
get engaged reliably into acute epileptiform events 
of variable duration, with supragranular neurons 
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preceding infragranular ones [16, 17]. Functional 
connectivity analysis during interictal periods has led 
to the identification of epileptiform network motifs 
and putative cell types hypothesized to contribute 
significantly to the evolution of aberrant activation 
patterns [18,19]. Multiple other studies and applica-
tions, well beyond the scope of our brief review, are 
currently ongoing. 

Recent advances in optical technology allow the 
simultaneous monitoring of exceptionally large 
(~5x5mm2) cortical fields of view (mesoscopic imag-
ing) covering multiple areas lying on the surface of 
the brain, imaging thousands of neurons in different 
layers without forgoing the micrometer resolution 
necessary to identify and localize individual units 
[20]. Deeper brain regions are also accessible for 
imaging using miniscope technology [6, 7]. Using 
this approach, Shuman et al. [7] found that CA1 
place cells in mice with temporal lobe epilepsy be-
come unstable, completely remapping their place 
fields across a period of a week. Importantly, mini-
scope technology allows imaging in freely moving 
animals, which is essential in epilepsy models that 
have low spontaneous seizure frequency. Multiple 
organisms from rodents to zebrafish to primates 
can be interrogated with these methods, yielding 
important mechanistic information at the pre-clinical 
level. Results can be compared with global EEG and 
fMRI measurements, which are more appropriate for 
studying distributed epileptic networks in human 
patients (see [21]). Combining these techniques 
with optogenetic or chemo-genetic approaches 
(not reviewed here) to probe causal relationships 
by manipulating neuronal activity in specific cell 
types, is a powerful approach for dissecting the 
circuit mechanisms of epilepsy.

The combination of new optical imaging and ge-
netic technologies has great promise for unravelling 
the cellular interactions that generate epileptiform 
activity, that is, cause neuronal networks to become 
epileptogenic. Particularly promising is a recently 
developed high-throughput ex vivo mRNA hybrid-
ization microscopy method (MERFISH), capable of 
resolving hundreds to thousands of distinct mRNA 
transcripts per imaging session while preserving 
spatial localization, thereby making it possible to 
attribute in situ mRNA expression profiles to spe-
cific cell types [22-24]. Aligning 2P images obtained 
in vivo with ex vivo MERFISH images obtained from 
the same tissue, has the potential to uncover the 
cell-specific transcriptomic profiles that underlie the 
aberrant functional activity phenotype exhibited by 
the same cells in vivo. An important question that can 
be studied with these methods is the mechanism by 
which specific pharmacologic interventions succeed 
or fail to contain abnormal patterns of excitability 
that lead to seizures. In time, information gained will 

help identify more effective therapeutic targets for 
pharmaco-resistant epilepsies. 

In conclusion, now is a particularly exciting time 
to work in the field of epilepsy. The optical imaging 
and spatially resolved transcriptomic microscopy tech-
niques outlined above, as well as other techniques 
not reviewed here (see [21,25,26]), will undoubtedly 
be harnessed in the near future to reveal in unprec-
edented detail the circuit mechanisms of epilepsy. 
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Abstract

Brief review of the role of neurosurgery in the management of Stroke.

Key words: stroke, neurosurgery, cerebral vasular abnormalities, Moya-Moya, cerbral bypass
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Stroke is a major cause of morbidity and mortality 
worldwide. Every year, an estimated 150,000 people 
in the UK have a stroke. That’s one person every five 
minutes. Most people affected are over 65, but anyone 
can have a stroke, including children and even babies. 
A stroke is the third most common cause of death in 
the UK. It is also the single most common cause of 
severe disability. More than 250,000 people live with 
disabilities caused by a stroke (Stroke Association) 
and 1000 people under 30 have a stroke each year.

London is a city with 9 million inhabitants. Stroke 
remains the second biggest killer and most common 
cause of disability with more than 11,500 strokes 
reported every year, which translate to approximate 
2,000 deaths. Areas with social deprivation and lower 
income have higher incidences of stroke, relating to 
diet, smoking and reduced prevention.

Traditionally Stroke was seen as a non surgical, 
sub acute condition, however recent advances in its 
management have altered this perception and are 
revolutionising stroke management.

The FAST campaigns and the establishment of 
Stroke hyper acute units strategically located around 
the capital have streamlined the management of the 
condition and allowed thrombolysis to be offered in 
a timely manner (within 4hours window). However 
the recent advent of thrombectomy have really revo-
lutionise the management of acute stroke. The pub-
lication of eight randomised controlled trials (RCTs), 
including 2423 patients, reported that endovascular 
thrombectomy was associated with improved func-
tional outcomes at 90 day follow-up (modified Rankin 
scale score 0–2, odds ratio 1.56, 95% confidence 
interval [CI] 1.32 to 1.85, p<0.00001). Moreover the 
effects of thrombectomy persisted for more than 2 
years. Such results have ushered in the modern era 
of stroke treatment. Of course a minority of strokes 
are amenable to thombectomy. For example the area 
covered by Kings College Hospital (SE London and 
Kent - approximate 4,5 million people) is treating 
>1600 cases a year and 15-20% of these are eligible 
for thrombectomy.

As the procedure requires resources that were 
traditionally available to stroke use a major recon-
figuration of services is currently on going in the UK 
in order to allocate the the appropriate hardware, 
personnel and beds to these very urgent patients. 

Various paradigms have been proposed: 

• 24/7 pure thrombectomy rota,
• Neurology/Cardiology involvement,
• Dually trained neurosurgeons/neurologists,
• incorporation at existing set up,
• extending the neurointerventionist cohort,
• Networks.

It is estimated that 5-7 interventionists will be 
needed to staff the rota. It is anticipated that 200-
300 procedures / annum / per centre (including an-
eurysm coiling). The full service establishment has 
taken 4-5 years, but we now have a 24/7 service that 
covers thrombectomy and management of ruptured 
aneurysms.

And for neurosurgery? Is there a role?
I will examine five areas were neurosurgery has a 

significant and increasingly important role:

Patients with malignant Stroke (large MCA)

“Malignant” middle cerebral artery (MCA) stroke 
refers to life threatening, space occupying MCA in-
farctions which occur in up to 10% of all stroke 
patients… The mortality rate of space occupying 
infarctions in the MCA-territory rises up to 80% de-
spite maximal medical treatment.

Decompressive craniotomy is a procedure proposed 
for the first time in 1901 by Dr Kocher for stroke and 
severe trauma. Its scientific basis is the Kelly-Monroe 
principle of the exponential increase of intracranial 
pressure (closed “box”) as intracranial components 
(ie oedema or blood increase in volume, and the 
similar reduction of intracranial pressure when the 
“box” (cranium) is expanded. 

During the past several years, numerous research 
papers have described the life-saving nature of hemi-
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craniectomy for MCA-territory cerebral infarction. 
Most hemicraniectomy series report a reduced mor-
tality to approximately 20%.

In three meta-analysis of patients subjected to 
decompressive craniotomy for stroke: DECIMAL 
(DEcompressive Craniectomy In MALignant middle 
cerebral artery infarction), DESTINY (DEcompressive 
Surgery for the Treatment of malignant INfarction 
of the middlecerebral arterY), and HAMLET, where 
patients were randomised within 48 h of stroke onset 
to surgical decompression, a reduced poor outcome 
(ARR 16%, -0·1 to 33) and case fatality (ARR 50%, 
34 to 66) were reported.

This beneficial effect has been observed even in 
older individuals and the benefits have persisted for 
more than a couple of years. Of course controversy 
still remains on the usefulness of the procedure on 
the older populations with their significant co-mor-
bidities as well as in patients with dominant hemi-
sphere strokes.

Patients with Haemorrhagic Stroke

Several prospective randomised controlled trials 
were undertaken during the previous century, cul-
minating in the first large trial of early surgery for 
spontaneous supratentorial intracerebral haemor-
rhage STICH the results of which were neutral. This 
outcome seemed to occur because some groups of 
patients did worse with surgery (those with deep-
seated bleeds or with intraventricular haemorrhage 
and hydrocephalus) and some better (patients with 
superficial lobar haematomas without intraventricular 
haemorrhage). The same effect was noted in a meta-
analysis of other studies: a benefit with surgery that 
was not significant.

The STICH II results confirmed that early surgery 
does not increase the rate of death or disability at 6 
months and might have a small but clinically relevant 
survival advantage for patients with spontaneous 
superficial intracerebral haemorrhage without intra-
ventricular haemorrhage.

Vascular abnormalities (Cavernomas, AVMs, 
DAVFs and Cerebral Aneurysms) 

All the vascular abnormalities can present with 
a stroke type picture depending on the mode of 
bleeding, the area of the brain affected as well as 
the premorbid history. With regards to arteriove-
nous malformations (AVMs) in particular, one group, 
which is likely to comprise most Grade I and II AVMs, 
generally benefit from treatment. Another group, 
including most SIV–V AVMs, probably are best left 
untreated given the available data. And certainly 
we will find that in a significant number of patients, 
probably including most of those with S-M Grade III 
AVMs, some of the most difficult Grade II AVMs, and 

the easiest Grade IV AVMs, we simply do not know 
from the data available whether intervention should 
be undertaken, and what form of intervention (if 
any) should be offered. Important also to note that 
AVMs account for 30-50% of haemorrhagic strokes 
in children. When compared to the adult population, 
children suffer AVM-related haemorrhages more fre-
quently, with some paediatric series reporting haem-
orrhage rates of 80–85%, resulting in mortalities up 
to 25%. The natural history of untreated ruptured 
paediatric brain AVMs is grim, with recent studies 
reporting mortality rates of 42.1% in this group.

Management of vascular lesions of the brain and 
spinal cord forms a large part of the neurosurgical 
workload, but specific details are beyond the scope 
of this brief review. 

Patients with Sickle Cell Anaemia  
and Moya-Moya

The chronic cerebrovascular disorder known as 
moyamoya disease (MMD) or moyamoya syndrome 
(MMS) leads to the development of characteristically 
tortuous and friable vascular collateral network in the 
region of the terminal portion of the internal carotid 
artery. These vascular networks are prone to rupture, 
resulting in haemorrhagic stroke. 

MMS is usually associated with: Neurofibromatosis 
I, Cranial therapeutic irradiation, Down syndrome, 
Hemoglobinopathy (Sickle), Renal artery stenosis, 
Ischaemic angiopathy and benign intracranial hy-
pertension. 

As many as 43% of patients with Sickle cell disease 
and strokes will have “moyamoya-like” collaterals 
on imaging studies, and patients with these findings 
may have a 5-fold increased risk for recurrent stroke 
compared with patients without these collaterals.

At present, no reliable medical treatment exists for 
the primary disease process causing the moyamoya 
vasculopathy. Current therapies are aimed at pre-
venting symptoms and negative disease sequelae 
by restoring and improving blood flow to affected 
cerebral hemispheres. Anti-platelet and anticoagulant 
agents have been used to reduce the risk of ischaemic 
stroke with optimal management of Sickle as the 
main focus. Given that moyamoya preferentially af-
fects the ICA system, surgical treatment exploits the 
external carotid as a source to restore blood flow to 
the affected cerebrum, via either a direct or indirect 
approach. The procedure of choice is usually the in-
direct approach known as Encephalo-Dura-Arterial 
Synangiosis (EDAS).

Patients with carotid occlusive disease  
refractory to maximum medical treatment 
(?Aspirin resistant)

Bypass surgery falls into 2 distinct categories: flow 
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augmentation and flow preservation. Flow augmen-
tation aims to restore flow to hypoperfused brain 
territories in patients with steno-occlusive diseases. 
Flow preservation aims to replace the blood flow 
provided by a major intracranial vessel, the occlu-
sion of which is necessary for treating an underlying 
disease, such as an aneurysm or a tumour. 

The EC-IC bypass was a procedure developed in 
the 70s and was the first surgical procedure ever to 
be subjected to a randomised trial. This early trial 
and subsequent ones have failed to demonstrate a 
superiority of the surgical approach compared with 
best medical management. There remains a very small 
cohort of patients who may still benefit from blood 
flow augmentation.

Conclusion

• Stroke care is evolving and management has be-
come acute and more invasive.

• Thrombectomy is revolutionising the management 
of acute stroke.

• Neurosurgical interventions have a further im-
portant role in a significant minority of properly 
selected patients.

• A multidisciplinary approach is imperative.
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Abstract

The Cyprus Institute of Neurology and Genetics (CING) is a bicommunal non-profit organisation formed in 
1991. The mission of CING is to develop and provide high level medical and clinical laboratory services, de-
velop and pursue advanced research, and provide education in the areas of Neurology, Genetics, Biomedi-
cal, Medical and related Sciences for the benefit of patients and society. The Neurogenetics Department 
developed translational neurogenetics alongside the global advances in genomic studies. We investigated 
neurological diseases prevalent in specific geographical regions of the island, such as Friedreich ataxia and 
many other neurogenetic disorders. Translational neurogenetics research studies in Cyprus attracted exten-
sive funding by international and national funding bodies, produced a remarkable research output such as 
gene mapping and identification, and established a fruitful global network of collaborations.

Key words: Neurogenetics, Cyprus, rare neurological diseases, translational research
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The first report of Friedreich ataxia (FRDA) in Cy-
prus was published thirty-three years ago [1] and 
constitutes the initiation of a fascinating journey 
of translational neurogenetics in Cyprus. During a 
study of multiple sclerosis, researchers found a clus-
ter of FRDA patients in the neighbouring villages of 
Kathikas and Arodhes in Paphos. The authors esti-
mated that 1-in-6 to 1-in-7 of the population of the 
villages carry the FRDA pathogenic variant. We fur-
ther investigated these families with linkage analysis 
and Sanger sequencing and, in 1996, established the 
genetic diagnosis. The CING neurologists ascertained 
additional FRDA families. In the year 2000, it be-
came apparent that 10 out of 11 patients originating 
from the district of Paphos had no evidence of origin 
from the above two villages. We thus focused on 
investigating whether the pathogenic variant spread 
outside the founder villages. We were successful 
in obtaining funding for an 18-month FRDA carrier 
screening programme. The programme aimed at:

1.  Informing the population of the Paphos district 
about the disease, the mode of inheritance and 
available diagnostic options.

2.  Collect samples from volunteers after informed 
and signed consent to estimate the FRDA carrier 
frequency in the district.

3.  To offer further genetic counselling to the FRDA 
carriers.

This programme established a high frequency of 
FRDA carriers (1-in-12) in the overall district of Pa-
phos [2]. It also confirmed the 1-in-7 FRDA carrier 

frequency in the population of Kathikas and Arodhes. 
These findings led to the introduction of the National 
Prevention Programme for Friedreich ataxia in 2010, 
an ongoing successful collaboration of the Ministry 
of Health and the CING.

Another cluster of patients with familial amyloid-
otic polyneuropathy (FAP) exists in Cyprus. The CING 
has been investigating FAP patients and their family 
members since 1987. All Cypriot FAP patients have 
a single pathogenic variant, the TTR Val30Met. We 
reported the prevalence and incidence of the disease 
at two-time points [3,4]. A dedicated clinic at CING 
is following up on patients. Many of them have un-
dergone liver transplantation, and currently, Cypriot 
patients participate in two international clinical trials 
(Alnylam, since 2016 and IONIS, since 2020) through 
their CING neurologists.

The CING participated in several studies on gene 
mapping and gene identification of neuropathies 
through international collaborations. We mapped 
a distal form of spinal muscular atrophy with upper 
limb predominance to chromosome 7 [5]. Pathogenic 
variants in the Glycyl tRNA synthetase (GARS) gene 
are associated with this distal spinal atrophy type 
V and Charcot-Marie-Tooth disease type 2D [6, 7]. 
We mapped a novel form of distal hereditary motor 
neuronopathy to chromosome 9p21.1-p12 [8] that 
we named Jerash type dHMN (HMNJ), and recently 
we have reported a novel SIGMAR1 pathogenic vari-
ant that is associated with the development of this 
disease [9].

We participated in mapping and identifying the 
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Charcot-Marie-Tooth type 4B (CMT4B) gene, en-
coding the myotubularin-related protein-2 [10, 11] 
and in identifying PDXK variants that cause poly-
neuropathy responsive to PLP supplementation [12]. 
We reported several novel pathogenic variants and 
functional studies in CMT disease [13, 14, 15, 16, 
17, 18, 19, 20, 21].

With the new era of next-generation massively 
parallel sequencing (NGS), we initiated studies with 
this new technological tool to diagnose rare neuro-
logical diseases. Initial studies of ataxias and spastic 
paraplegias enabled the identification of novel patho-
genic variants in long-pending diagnosis patients and 
families. An example of applying various techniques 
in combination is the case of family 903 with spas-
tic ataxia due to a GBA2 pathogenic variant [22]. 
Initial linkage analysis of the specific family back in 
the 1990s has mapped the disease in the family to 
the aprataxin (APTX) gene locus on chromosome 
9p21.1. Sanger sequencing of the APTX gene and 
MLPA based investigation for APTX duplication/dele-
tion excluded the probability of a pathogenic variant 
in this gene. Because the parents were third cousins, 
a common genetic background was suspected, and 
thus we performed genome-wide homozygosity map-
ping to identify common by descent chromosomal 
regions. We detected two areas with high homo-
zygosity scores: a 3.1 Mb region on chromosome 
5 that harbours eight protein-coding genes and a 
6.49 Mb region on chromosome 9 with ninety-six 
protein-coding genes. We then performed whole-
exome sequencing (WES), which helped exclude any 
pathogenic variant in the chromosome 5 candidate 
region and revealed possible pathogenic variants in 
three genes within the chromosome 9 candidate 
region. We confirmed the GBA2 pathogenic variant 
in this family with spastic ataxia with a segregation 
analysis of the five members of the family. We further 
performed biochemical studies of the GBA2 variant 
in lymphoblastoid cell lines derived from family mem-
bers and healthy control individuals [23]. We recently 
performed transcriptomic characterisation of tissues 
from patients and healthy control individuals. We 
discovered more than 5000 differentially expressed 
genes. Subsequent pathway analyses reveal biologi-
cal pathways implicated in spastic ataxia. This work 
is currently under review for publication (Kakouri A 
et al., under review).

We investigated several additional patients and 
families with rare neurological diseases using NGS 
based approaches. Although the hopes for reach-
ing a molecular diagnosis were high at the initia-
tion of this investigation, through our ten years of 
experience, the diagnostic yield is only above 30%. 
A combination of WES and transcriptomic analyses 
in the availability of patient material for RNA level 
investigation should enable a higher diagnostic yield. 

Thus, we are currently working in this direction. In 
addition, participation in multicentre studies within 
the framework of recently established European Ref-
erence Networks (ERNs) or any other international 
collaborative effort should improve diagnostic yields 
and improve the time to diagnose rare neurological 
disorders. The CING is committed to introducing 
cutting edge technological approaches both in the 
diagnostic and in the research sector for the benefit 
of patients and society.
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Abstract

Stroke genetics have been transformed from a field exploring causes of rare hereditary forms of cerebro-
vascular disease to an international dynamic and expanding arena offering key insights into stroke biology 
and exciting opportunities for clinical applications. Genome-wide association studies, which triggered this 
transformation, have already identified more than 40 genomic risk loci associated with stroke, which offer 
important windows into stroke pathogenesis and starting points for experimental explorations of pharma-
cological strategies. Furthermore, genome-wide explorations have enabled the development of polygenic 
risk scores, which represent a promising potential application for risk prediction in clinical populations. Uti-
lization of genetic data further allows exploration of causal relationships between exposures and outcomes 
and the discovery of novel drug targets for stroke with the use of Mendelian randomization. In this review, 
I provide a brief overview of the major developments in the field and opportunities for applications.

Key words: genetics; genomics; stroke; cerebrovascular disease; polygenic risk prediction; Mendelian randomization

SPECIAL PAPER  ΕΙΔΙΚΟ ΑΡΘΡΟ

Stroke remains a leading cause of death and dis-
ability worldwide [1]. While major advances in the 
prevention and treatment of stroke have taken place, 
important gaps remain. For example, there is no spe-
cific preventive strategy for small vessel stroke and 
intracerebral hemorrhage, whereas neuroprotectant 
therapies have not met the initial expectations. As 
we learned from the past, understanding the biol-
ogy underlying stroke pathogenesis is important to 
improve treatment options. Genetics were always 
considered anchors to fundamental biological mecha-
nisms. But recent major advancements in available 
technologies have revolutionized the way we explore 
genetic information to discover disease mechanisms. 
Stroke genetics has grown from a small field ex-
ploring causes of rare hereditary forms of stroke to 
a dynamic and expanding arena offering insights 
about the pathogenesis of sporadic stroke. Genome-
wide association studies (GWAS), which triggered 
this transformation, have offered not only unique 
windows into disease biology but also unexpected 
opportunities for clinical applications.

Gene discovery: from monogenic stroke  
to novel pathways in sporadic stroke

Early genetic studies found genes that underlie 
forms of Mendelian stroke [2] and pointed to path-
ways involved in stroke pathogenesis that were par-
ticularly relevant for stroke subtypes. Such examples 

include genes encoding proteins related to the extra-
cellular matrix, which were associated with heredi-
tary forms of cerebral small vessel disease (COL4A1, 
COL4A2, HTRA1, NOTCH3) [3]. However, beyond 
Mendelian stroke that is responsible for a very small 
proportion of stroke cases encountered in the clinic 
(around 1-2% of lacunar strokes and <5% in total) 
[4], studies in twins found a higher risk of stroke 
among monozygotic, as compared with dizygotic 
co-twins, thus suggesting a genetic component for 
sporadic stroke cases as well [5]. In further support of 
this, within-family studies showed that stroke is more 
common among individuals with a family history of 
stroke or vascular disease [6]. Before the mapping 
of the human genome and the subsequent develop-
ment of GWASs, several studies explored candidate 
genes that might be associated with stroke risk. 
While such studies occasionally provided important 
insights into stroke biology, most of the described 
associations were not replicated in subsequent GWAS 
analyses [7]. The first GWASs in stroke estimated the 
heritability of stroke prevalence at around 40% for 
ischemic stroke7 and 30% for intracerebral hemor-
rhage [8]. 

More recent GWASs including up to 71,147 cases 
have identified >40 risk loci for stroke risk [9, 10, 
11]. The results of these studies highlight the role 
of specific genes in stroke pathogenesis and can be 
used as the starting point for follow-up functional 
experiments. One example is histone deacetylase 9 
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(HDAC9), which consistently came up as a major 
risk locus for multiple atherosclerotic phenotypes 
including large artery stroke, coronary artery disease, 
and peripheral artery disease and enabled functional 
studies in atherosclerosis-prone mice [12]. Other loci 
involved in stroke pathogenesis include genes im-
plicated in the pathogenesis of major risk factors, 
such as hypertension (e.g. FURIN-FES) and hyper-
cholesterolemia (e.g. LDLR) or genes that have been 
previously implicated in the development of major 
stroke causes, such as atherosclerosis, atrial fibril-
lation, and cerebral small vessel disease [3]. Finally, 
risk loci for stroke are enriched in target genes for 
approved treatments, such as FGA, encoding the 
target for thrombolytic agents, highlighting that 
the discovered risk loci may harbor targets for fu-
ture drug development [10]. Until now, the largest 
GWASs have provided information about common 
variants, encountered in >0.5-1% of the population. 
As the datasets increase and low-cost sequencing 
technologies become more widely available, newer 
methods that also explore rare genetic variation are 
expected to be integrated into future studies. Prelimi-
nary analyses focused on rare variants in the exonic 
regions of specific genes, such as HTRA1, already 
provide important results about the pathogenesis 
of cerebrovascular disease [13].

Polygenic risk scores: a tool ready for clinical 
application?

Beyond new insights into disease biology, the re-
sults from GWAS analyses can be useful in stroke 
risk prediction. While individual genetic variants con-
tribute to disease risk only minimally, by combining 
multiple variants with individually small effects in a 
so-called “polygenic risk score” (PRS; or genomic 
risk score), it is possible to additively quantify ge-
netic predisposition to stroke risk [14]. Multiple novel 
methods have been developed that aim to combine 
information throughout the genome from GWASs 
in an optimal way, so as to maximize the predictive 
power of the tool [15]. For example, the predictive 
performance can be enhanced by combining PRSs for 
stroke with multiple PRSs from traits known to be 
involved in stroke pathogenesis, such as blood pres-
sure, diabetes, and circulating lipids, in a so-called 
meta–genomic risk score. The hazard ratio obtained 
from such a score for stroke is 1.26 per standard de-
viation increment [16], whereas a score for coronary 
artery disease achieved a hazard ratio of 1.71 [17]. 
These scores consistently increase predictive power 
when added to models of established clinical risk fac-
tors [16, 17]. Because genetic information is present 
from birth and remains stable over time, PRSs can be 
assessed by a single genotyping effort long before 
traditional risk factors manifest, thus allowing early 

prognostication and decisions on targeted monitor-
ing [18]. Already post hoc analyses from clinical trials 
suggest that PRSs can predict risk of stroke among 
patients with cardiometabolic risk factors [19]. In-
terestingly, among patients with atrial fibrillation, 
an ischemic stroke PRS can enhance the predictive 
performance of the CHA2DS2-VASc score for stroke 
prediction, thus opening a window for a potential 
clinical application in the decision-making algorithms 
for initiating anticoagulant treatment [19]. Very im-
portant topics remain however open before imple-
menting PRSs: these include sex differences, which 
are not traditionally considered, the reproducibility of 
PRSs across different ancestries, the communication of 
PRS screening results to individuals, and the optimal 
management of individuals at high genetic risk [20].

Mendelian randomization: exploring causal 
associations with human genetic data

Another application of genetic results includes 
the exploration of causal relationships [21]. An in-
strumental variable analysis, called Mendelian ran-
domization, makes use of genetic variants associated 
with a risk factor (genetic instruments) to investigate 
causal associations between the risk factor and a 
disease outcome [22, 23]. The emergence of large-
scale GWASs enabled the discovery of multiple ge-
netic variants that explain an increasing proportion 
of variance in risk factors of interest. Thus, Men-
delian randomization studies may incorporate up 
to hundreds of genetic variants as instruments to 
explore associations between genetic predisposi-
tion to exposure traits and outcomes of interest. As 
genetic information is anchored to conception and 
is not influenced by other potential environmental 
confounders, Mendelian randomization is less prone 
to traditional biases in observational studies, such as 
confounding and reverse causation. However, a num-
ber of assumptions need to be fulfilled in order for 
the genetic variants to be valid instrumental variables: 
[23] the variants should (i) strongly be associated 
with and predict the risk factor of interest, (ii) only 
associate with the outcome through their relation 
to the risk factor and (iii) not relate to confounders 
of the exposure-outcome association. Importantly, 
genetic variants with so-called pleiotropic effects 
on potential confounders in the exposure-outcome 
association may not represent valid instruments [23]. 
Pleiotropy refers to the phenomenon where a gene 
or a genetic variant can influence more than one 
phenotypic traits and may represent a source of bias 
in Mendelian randomization analyses [24]. Develop-
ments in statistical methodology have offered analyti-
cal tools to test the validity of these assumptions and 
correct for deviations from the real effect estimates 
due to pleiotropy [25].
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Mendelian randomization studies have offered 
unique insights into stroke etiology, and particularly 
into the etiological risk factors that underlie spe-
cific diagnostic subtypes [26]. For example, studies 
focused on blood pressure provided evidence for a 
strong association of higher genetically predicted 
blood pressure with all major ischemic stroke sub-
types (large artery, cardioembolic, small vessel stroke) 
and deep intracerebral hemorrhage, but not with 
lobar intracerebral hemorrhage, which is traditionally 
associated with cerebral amyloid angiopathy [27]. 
Furthermore, on top of mean blood pressure, geneti-
cally predicted late-life pulse pressure, which is an 
indicator for arterial stiffness, is also a risk factor for 
ischemic stroke, and particularly large artery stroke 
[28]. Another interesting example includes lipid me-
tabolism. Mendelian randomization studies confirmed 
a potentially causal association of LDL cholesterol 
levels only with large artery stroke [29], whereas for 
small vessel stroke, a protective effect of higher HDL 
cholesterol was more robust [30]. Interestingly, the 
inverse relationships were detected for intracerebral 
hemorrhage [30], further expanding on findings from 
post hoc analyses of randomized trials that lowering 
LDL cholesterol might be a risk factor for hemorrhagic 
stroke [31]. Other interesting insights include the role 
of type 2 diabetes [32], hyperglycemia [32], abdomi-
nal obesity [33], and smoking [34] on large artery and 
small vessel stroke and a rather linear association 
between alcohol consumption and risk of ischemic 
stroke [35]. As sample sizes further increase, unique 
opportunities will emerge for clarifying the role of 
traditional vascular risk factors in stroke pathogen-
esis, but also for discovering novel risk factors [26]. 
Expansions of more elegant analytical epidemiological 
tools to Mendelian randomization, such as multi-
variable and mediation analyses, will also enable a 
more accurate dissection of the pathways that lead 
to stroke [36, 37].

Leveraging genetic data for drug discovery

The drug discovery pipeline is costly and lengthy. 
Despite the increasing investment in drug develop-
ment, only around 5% of cardiovascular disease drugs 
that enter phase I trials make it to market approval 
[38]. Historical retrospective analyses have shown 
that evidence of effect from human genetic studies 
for a candidate protein drug target increases the 
probability for a compound targeting this candidate 
to reach approval by 2- to 4-fold [39, 40]. Perhaps 
the example that most compellingly demonstrates 
this paradigm is PCSK9, which is the target of the 
recently developed proprotein convertase subtili-
sin/kexin type 9 (PCSK9) inhibitors [41]. PCSK9 was 
first described in 2003, when it was implicated in 
familial hypercholesterolemia [42], soon thereafter, 

in 2006, loss-of-function variants in PCSK9 were as-
sociated with lower LDL levels and a lower lifetime 
risk or acute coronary events [43]. Already in 2017 
and 2018, two large-scale phase III trials provided 
robust evidence that two monoclonal antibodies 
against PCSK9 reduced the rates of cardiovascular 
events on top of statins [44, 45] .

An interesting example more focused on stroke is 
the evidence from human genetics on the potential 
atheroprotective effects of anti-inflammatory drug 
targets. A study exploring genetic variation in the 
circulating levels of 41 cytokines and growth factors 
showed genetic variations in the circulating levels 
of monocyte chemoattractant protein-1 (MCP-1 or 
alternatively called CC-chemokine ligand-2, CCL2) to 
be associated with a higher risk of ischemic stroke 
[46], This was particularly the case for large artery 
stroke, but also for other atherosclerotic phenotypes, 
such as coronary artery disease, and myocardial in-
farction [46]. These results were later confirmed in 
prospective cohort studies [47-49] and also agree 
with findings from experimental atherosclerosis mod-
els that support a role of the MCP-1/CCL2 pathway in 
monocyte recruitment to atherosclerotic lesions [50]. 
Beyond MCP-1/CCL2, genetic studies also provided 
evidence for a potentially causal role of interleukin-6 
(IL-6) signaling in large artery stroke [51]. Specifically, 
genetic variants within the gene encoding IL-6 recep-
tor (IL6R) show strong associations with large artery 
stroke, abdominal aortic aneurysm, coronary artery 
disease, and a more favorable cardiometabolic profile 
[51, 52]. These data provide evidence for a causal 
role of IL-6 signaling in atherosclerotic cardiovascular 
disease. Indeed, a monoclonal antibody against IL-6 
has already been tested in phase 2 trials in patients 
with chronic kidney disease and a history of athero-
sclerotic disease [53] and is currently to be tested in 
a phase 3 trial. Other interesting applications include 
phenome-wide association studies, which can reveal 
previously underrecognized side-effects associated 
with drug targets or repurposing opportunities for 
available drugs targeting specific drug candidates 
[52].

Genetics of stroke outcome might point  
to mechanisms related to neuroprotection

A new generation of studies aims to explore ge-
netic determinants of outcomes after stroke. Such 
studies could pinpoint pathways that might serve 
as targets for the development of neuroprotective 
agents, thus addressing the high demand for such 
treatments. However, these efforts are in their first 
steps and still suffer from low power due to the 
small sample sizes that do not suffice for genetic 
discoveries [54]. Stroke outcome genetic studies are 
by design more challenging than studies focusing 
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on stroke risk. They are focused only on cases, they 
need to model clinical variables that strongly predict 
stroke outcome, such as time from stroke onset, 
stroke severity, and stroke etiology, and they need 
to balance between data availability and accuracy of 
outcome measures. For example, dynamic outcome 
measures of early neurological change, such as the 
change in National Institutes of Health Stroke Scale 
(NIHSS) from 6 hours to 24 hours after stroke have 
been proposed as key readouts [55] and might be 
better fits for genetic studies than more traditional 
readouts used in clinical research, such as 3-month 
modified Rankin scale [54]. Although still at its birth, 
the field of stroke outcome genetics is already grow-
ing and has provided some results about pathways of 
potential interest for brain injury, repair, and recovery 
following ischemic stroke, which demonstrate the 
feasibility of the approach [56-58].

Future directions and conclusions

Over the last two decades, the field of medical and 
population genetics in cerebrovascular disease has 
been growing rapidly. As a result, several opportuni-
ties for applications have emerged that could improve 
stroke care in the near-term future. The advance-
ments in the field have been the result of large-scale 
international collaborations, such as the Interna-
tional Stroke Genetics Consortium, and biobanking 
initiatives, such as the UK Biobank, Biobank Japan, 
and the China-Kadoorie Biobank. The broad data 
sharing mentality of the field has critically boosted 
innovation and accelerated paths to discovery. Still, 
important developments are underway, which are 
worth mentioning. Key initiatives to integrate data 
from ancestries other than Europeans are expected 
to lead to new discoveries and to boost the perfor-
mance of PRSs in risk prediction. There is a major 
need for diversification in genetic research, as most 
data come from analyses in European populations. 
Large benefits are also to be expected by genetic 
analyses of endophenotypes of cerebrovascular 
disease, such as MRI biomarkers of cerebral small 
vessel disease. The integration of other large-scale 
data, such as transcriptomics and proteomics, into 
genetic research will allow us to link the associa-
tions between genetic variants and disease risk to 
biochemical footprints that will enhance our under-
standing of disease mechanisms. Finally, important 
follow-up functional experiments that will enhance 
our understanding about the mechanisms through 
which identified variants influence disease risk will 
accelerate the translation of genetic discoveries to 
novel therapeutics.
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Abstract/Summary

Quantitative and computational methods have increasingly provided insights in many neuroscience 
problems. Amongst them, AI and machine learning have relatively recently emerged as very promising av-
enues for knowledge discovery, especially in the era of complex, big and diverse data. Herein, applications 
of machine learning in neuroimaging are discussed, with emphasis on aging and Alzheimer’s Disease (AD), 
schizophrenia, and the most aggressive brain cancer, namely glioblastoma (GBM). In particular, machine 
learning is shown to produce highly sensitive and specific imaging signatures of brain change during early 
preclinical stages of AD, as well as to identify neuroanatomically distinct subtypes of schizophrenia. Finally, 
machine learning is shown to produce imaging signatures that predict patient outcome. These representa-
tive results highlight the potential of machine learning in neuroimaging as means to derive sensitive and 
specific biomarkers, and to reduce complex and diverse data into a small number of dimensions capturing 
different aspects of the neurobiology of brain diseases.

 

SPECIAL PAPER  ΕΙΔΙΚΟ ΑΡΘΡΟ

In the past 30 years we have experienced an ex-
ponential growth of various neuroimaging methods, 
which capture complex aspects of structure, func-
tion and connectivity of the human brain, in healthy 
as well as in diseased states. Quantitative analysis 
ways have progressed in parallel, responding to the 
complexity of this data and the richness of the in-
formation that can be derived from them. Among 
these methods, machine learning has emerged as a 
promising tool for extracting imaging signatures that 
contribute to personalized precision diagnostics and 
prognostication [1-6]. Although machine learning 
has often been viewed as a way to automate tasks 
that currently require a great deal of human effort 
(e.g. precise segmentation of anatomical structures 
or detection of lesions), its greatest potential lies in 
“seeing” in the data what humans are unable to see, 
thereby leading to knowledge discovery. 

Imaging patterns can be quite complex. For ex-
ample, no brain region offers sufficient sensitivity and 
specificity in detecting AD, schizophrenia, and most 
other brain diseases, despite the fact that numerous 
studies have associated them with changes in brain 
volumes, cortical thickness, brain connectivity and 
function. The main premise of machine learning is 
that the proper integration of many such “weak pre-
dictors” forms strong and highly sensitive and specific 
imaging signature which can serve as biomarkers 

of disease and offer personalized prognostications. 
This talk discussed two such MR imaging signatures 

reported in AD [7] and schizophrenia [3], which are 
identified on an individual basis with promising ac-
curacy. Perhaps most importantly, the former was 
also found to progressively increase relatively more 
rapidly in individuals with normal cognition who later 
progressed to mild cognitive impairment (MCI) [1], 
thereby potentially offering an early biomarker of AD 
during stages in which pharmacological and lifestyle 
interventions might be most effective. In GBM, ma-
chine learning derived imaging signatures have been 
found to improve our predictions of patient outcome 
[8], thereby offering additional information that can 
influence patient management, targeted recruitment 
into clinical trials, as well as more effective evaluation 
of treatment effects via comparisons to personal-
ized estimated of outcome, rather than to generic 
population-based medians.

A notorious limitation of machine learning meth-
ods has been their often poor generalization and 
reproducibility in new patients and scans. This weak-
ness is not necessarily fundamental for these meth-
ods, but rather emerges from the oftentimes poor 
application of these approaches to biomedical data. 
Insufficient training is among the most prominent 
challenges, as the sheer dimensionality and com-
plexity of various types of neuroimaging data would 
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normally necessitate training on tens of thousands 
of scans in order to sample the variability of brain 
structure and function, as well as to access the di-
versity of various imaging acquisition protocols and 
scanner characteristics. Recent work on the forma-
tion of international consortia bringing together 
thousands, or tens of thousands of datasets have 
offered promise that sufficiently ample and diverse 
training and validation will be soon possible, which 
will propel machine learning methods into routine 
clinical use. Several such consortia were described 
on studies of brain aging [9, 10], schizophrenia [11, 
12], and GBM [13].

As the availability of very large and diverse neu-
roimaging and clinical datasets increases, additional 
problems that were previously inaccessible can now 
be addressed. One such important problem is that 
of heterogeneity of brain diseases: perhaps seek-
ing an imaging signature of AD or schizophrenia is 
mundane, since both of these diseases are highly 
heterogeneous. Recent work has developed advanced 
semi-supervised machine learning methods, which 
simultaneously seek to estimate disease subtypes 
and establish respective imaging signatures [14-16]. 
Application of these methods to schizophrenia identi-
fied two neuroanatomically distinct subtypes/dimen-
sions of schizophrenia, which also showed differences 
in schizophrenia-related polygenic risk scores. This 
suggests that diseases that are clinically categorized 
as unique entities might have quite distinct neuro-
pathological underpinnings, and potentially differ-
ent response to various treatments. A similar recent 
study in MCI and AD uncovered 4 dimensions of 
structural brain change [16], and two progression 
pathways. Although one of them appeared to be 
aligned with typical AD-like patterns of atrophy, the 
second one was more associated to global patterns 
of brain atrophy potentially related to small vessel 
ischemic disease and other comorbid pathologies that 
accelerate the process of brain aging and dementia. 
Similar work in GBM has identified distinct imaging 
subtypes of GBM, with differences in patient survival 
and in molecular characteristics of the tumor [17]. 

These and many other studies of similar flavor are 
setting the foundation for more precise definition 
of neurologic and neuropsychiatric diseases, based 
on underlying neurobiological signatures, in part 
derived from imaging. Importantly, such methods 
are gradually establishing a dimensional view of brain 
pathologies, with various dimensions informed by 
neurobiological signatures derived from a variety of 
biomarkers, including imaging. Eventually, categoriza-
tions of a patient into a single and specific disease 
might become practice of the past, and replaced by 
placement of a patient in a brain coordinate system 
spanning the heterogeneity of normal and abnor-
mal brain structure and function. Numerous prior 

studies can offer contextual information about the 
clinical implications of a patient being in a particular 
location on this brain chart (e.g. implications about 
response to certain treatments). Machine learning 
methods applied to neuroimaging data gradually and 
systematically build such dimensions and contextual 
knowledge. 
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Abstract

This short review will summarize the major echogenic patterns in transcranial sonography (TCS) for the 
diagnostic workup of Parkinson's disease (PD). PD is a primary neurodegenerative disorder caused by a loss 
of dopaminergic cells in the substantia nigra (SN). In addition to the dopamine deficiency, changes in other 
neurotransmitter systems are present, including alterations in the serotonergic system [1]. The definitive 
cause of PD is unknown. The disease is characterized by a slowly progressive disease course with bradyki-
nesia as leading motor symptom, but also non-motor symptoms such as depression are common and can 
precede motor manifestations. The TCS analysis of different brain regions has been proven helpful in the 
diagnostic workup of PD, including differential diagnostic, non-motor diagnostic, and risk stratification of 
the healthy elderly population.

Key words: ultrasound, sonography, substantia nigra, lentiform nucleus

Substania nigra hyperechogenicity 

The most prominent echogenic pattern in Parkin-
son’s disease (PD) is a substantia nigra (SN, figure 
1) hyperechogenicity that is assessed through the 
transtemporal bone window. The SN is displayed in 
the axial mesencephalic examination plane of tran-
scranial sonography (TCS). A hyperechogenicity of 
the SN is defined by a planimetric measurement that 
shows an enlarged echogenic signal of the SN [2].

In 1995, Becker et al. published the first study on 
SN hyperechogenicity in PD [3]. In this first study, 
40% of the examined PD patients had a hyperecho-
genic SN in the TCS examination. In comparison, 
none of the healthy controls in this study showed 
an SN hyperechogenicity. In 2001, Berg et al. dem-
onstrated that approximately 90% of the patients 
with PD have a hyperechogenic SN. Together with 
an improvement of the TCS image resolution, these 

SPECIAL PAPER  ΕΙΔΙΚΟ ΑΡΘΡΟ

Figure 1. Substantia nigra and brainstem raphe

Legend: The butterfly-shaped midbrain is outlined for better visualization. The asterisk indicates the aqueduct. Arrowheads indicate 
the brainstem raphe. The long arrows in (B) mark the hyperechogenic enlarged area of Substania nigra. Raphe grading (A-C): (A) Raphe 
structure not visible, grade 0, pathologic finding. (B) Echogenic line of the raphe is interrupted, grade 1, pathologic finding. (C) Normal 
echogenicity, grade 2, normal finding.
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results were reproduced by other research groups, 
proofing the SN hyperechogenicity as a reliable and 
valid marker for PD and the differential diagnosis 
of extrapyramidal movement disorders [4, 5, 6, 7]. 
The enlarged echogenic signal of substantia nigra 
represents a characteristic hallmark of PD today, 
with a prevalence in newly diagnosed PD patients 
of about 80-90% [8, 9]. Therefore, TCS is increasingly 
applied for the differential diagnosis of PD and es-
sential tremor (ET), where an SN hyperechogenicity is 
detectable in about 8-16%. The prevalence of an SN 
hyperechogenicity in the healthy population is even 
lower [10, 11, 12]. The echogenic area of the SN is 
routinely evaluated in a single axial mesencephalic 
examination plane, but it can also be depicted in a 
coronal examination plane, revealing a good sensitiv-
ity of 90.3% and a specificity of 96.9% to distinguish 
PD from healthy controls and patients with essential 
tremor, respectively [13].

The extent of the motor symptoms is not corre-
lated with the sonographically measured area size of 
the SN [14]. Longitudinal studies have demonstrated 
that the presence of an SN hyperechogenicity in el-
derly healthy subjects is a factor that increases the 
risk by approximately 17 times to develop PD within 
three years [15]. Therefore, the presence of an SN 
hyperechogenicity has been included in the research 
criteria for prodromal Parkinson’s syndrome [16].

The histopathological correlate of the hyperecho-
genic SN is still unknown, but it is assumed to indi-
cate an increased amount of iron bound to proteins 
that differ from ferritin [17]. However, the extent of 
hyperechogenicity is currently not seen as correlat-
ing to progressive neurodegeneration in the SN [9].

Nucleus lentiformis hyperechogenicity

As the SN hyperechogenicity allows a clear dis-

tinction between PD, healthy controls, or patients 
with essential tremor, the discrimination between 
idiopathic and atypical parkinsonian syndromes (aPS) 
is insufficient [18]. A meta-analysis by Shafieesabet 
et al. found a prevalence of SN hyperechogenicity in 
84% of PD patients and 28% of aPS patients [19].

Besides the SN, several other structures in the 
brain have been examined by TCS in extrapyramidal 
movement disorders [6, 20]. A hyperechogenicity of 
the nucleus lentiformis (LN, figure 2) was found to 
appear more frequently in patients with aPS, espe-
cially in patients with the parkinsonian phenotype of 
multiple system atrophy (MSA-P) or in patients with 
progressive supranuclear palsy (PSP) [21]. Thus, LN 
hyperechogenicity has been considered as a promis-
ing echogenic pattern of aPS. The LN is investigated 
in TCS using the diencephalic axial examination plane. 
A meta-analysis examining the frequency of LN hy-
perechogenicity in PD and aPS demonstrated a preva-
lence of 76% (95% CI: 0.62-0.88) in aPS compared 
to 16% (95% CI: 0.10-0.23) in PD [22].

So far, no studies are investigating the cellular and 
extracellular changes in PD patients with LN hyper-
echogenicity. However, an increase in the tissue iron 
level could cause the hyperechogenic alterations of 
the LN visualized in TCS. Apart from that, Walter et 
al. conducted a tissue metal analysis in autopsy brains 
of 11 patients with Wilson’s disease (WD), in which 
the LN hyperechogenicity is a common ultrasound 
finding [23]. Diagnosis of WD was confirmed for 
all of these WD cases after an autopsy, and they all 
showed an LN hyperechogenicity in TCS. The authors 
found a clear correlation between the LN hyperecho-
genicity and the putaminal concentration of copper 
but not iron. 

Raphe hypoechogenicity

Besides its value in diagnosing and discriminating 
Parkinsonian syndromes, TCS is also a valuable tool 
for investigating non-motor features. Depression 
and apathy frequently appear in PD patients and 
can represent early non-motor symptoms [24-26]. 
Several studies have shown that many PD patients 
are affected by depression, even in the prodromal 
state of disease [27].

Brainstem raphe (BR) alterations in TCS have been 
associated with depression in PD patients, underlin-
ing an involvement of the serotonergic system in this 
non-motor feature of PD [7, 28, 29]. Different from 
the enlarged echogenic area of the SN, a reduced 
echogenic signal of the BR is thought to visualize 
changes in the serotonergic system [7]. The echogen-
ic pattern of BR is assessed by the axial mesencephalic 
examination plane and classified semi-quantitatively 
on a three-point scale (figure 1): 0 = raphe structure 
not visible, 1 = slight and interrupted echogenic ra-

Figure 2. Nucleus lentiformis hyperechogenicity

Legend: Large arrow displays the hyperechogenicity of 
the right nucleus lentiformis. Small arrow marks the pi-
neal gland. The distance between the two small crosses 
defines the third ventricle diameter
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phe structure, 2 = normal echogenicity (echogenicity 
of raphe structure is not interrupted). Alteration of 
the BR can also be depicted in the coronal exami-
nation plane and have also been associated with 
apathy in PD [29].

Until now, BR alterations in PD have been inves-
tigated in a cross-sectional study approach. Future 
studies should investigate its structural correlate 
and the predictive value of BR hypoechogenicity for 
patients with PD, which might enable the identifica-
tion of a subgroup of PD patients at higher risk of 
suffering from or developing depression or apathy.

Conclusion

The assessment of echogenic patterns in PD cov-
ers a broad spectrum of diagnostic questions, which 
the non-invasive TCS technique can quickly assess 
[30]. Nevertheless, TCS requires a sufficient trans-
temporal bone window lacking in 5-40% of patients 
depending on age, sex, and geographic origin [9]. 
Furthermore, the reliability of the findings depends 
on a high-quality ultrasound system and the inves-
tigator’s qualification. Future efforts should further 
develop this method and achieve its full potential 
in diagnosing PD and other neurological diseases.
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 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΛΛΗΝΙΚΗΣ ΝΕΥΡΟΛΟΓΙΚΗΣ ΕΤΑΙΡΕΙΑΣ  
 ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2021-2022

  20 Νοεμβρίου 2021: «Βιοδείκτες στη διάγνωση των Ανοϊκών Συνδρόμων», Webinar

  4 Δεκεμβρίου 2021: «Ιατρική βασισμένη στην τεκμηρίωση: Από τη θεωρία στην πράξη», 
Ημερίδα, Αθήνα

  29-30 Ιανουαρίου 2022: «Γενετικός Έλεγχος στα Νευρολογικά Νοσήματα-Θεραπεύσιμα 
Νευρογενετικά Νοσήματα», Διημερίδα, Αθήνα 

  26-27 Φεβρουαρίου 2022: «Κεφαλαλγίες», Διημερίδα, Ηράκλειο Κρήτης 

  19-20 Μαρτίου 2022: «Απομυελίνωση και όψιμη ηλικία», Διημερίδα, Θεσσαλονίκη 

  9 Απριλίου 2022: «Νεότερες διαγνωστικές και θεραπευτικές εξελίξεις στο χώρο  
των Νευρομυϊκών Νοσημάτων», Μονοήμερο Σεμινάριο, Πάτρα 

  14 Mαΐου 2022: «Πρακτική διαχείριση των ασθενών με Άνοια στην καθημερινότητα», 
Μονοήμερο Σεμινάριο, Αθήνα 

  16-19 Ιουνίου 2022: 33ο Πανελλήνιο Συνέδριο Νευρολογίας, Ηράκλειο Κρήτη

ε δΕ κ π α ι δ ε υ τ ι κ έ ς  Δ ρ ά σ ε ι ς  τ η ς  Ε Ν Ε
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-  Ε π ι σ τ η µ ο ν ι κ έ ς  ε κ δ η λ ώ σ ε ι ς

2021-2022

  16-19 Δεκεμβρίου 2021: 8ο Πανελλήνιο Συνέδριο Ελληνικής Ακαδημίας 
Νευροανοσολογίας, Υβριδικό, Θεσσαλονίκη

  24-27 Φεβρουαρίου 2022: WCN 2022, Kuala Lumpur, Malaysia

  13-18 Μαρτίου 2022: XVII World Congress of Neurosurgery WFNS, Bogota, Colombia

  24-27 Μαρτίου 2022: 16th World Congress on Controversies in Neurology (CONy),  
London Uk

  2-8 Απριλίου 2022: AAN Annual Meeting, Seatle, UK

  4-6 Μαΐου 2022: 8th European Stroke Organisation Conference (ESOC), Lyon, France

  16-19 Ιουνίου 2022: 33ο Πανελλήνιο Συνέδριο Νευρολογίας, Ηράκλειο Κρήτης

  25-28 Iουνίου 2022: 8th Congress of the European Academy of Neurology,  
Vienna, Austria

  9-13 Ιουλίου 2022: 14th European Epilepsy Congress, Geneva, Switzerland


